Đây là hình ảnh bt ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3-4x^2+3x+a-10⋮x-2\)
=>\(2x^3-4x^2+3x-6+a-4⋮x-2\)
=>a-4=0
=>a=4
a) \(\Delta ABD\) đều (gt)
\(\Rightarrow\widehat{DAB}=60^0\)
\(\Rightarrow\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=60^0+90^0=150^0\)
\(\Delta ACE\) đều (gt)
\(\Rightarrow CAE=60^0\)
\(\Rightarrow\widehat{EAB}=\widehat{CAE}+\widehat{BAC}=60^0+90^0=150^0\)
\(\Rightarrow\widehat{EAB}=\widehat{DAC}=150^0\)
Xét \(\Delta ABE\) và \(\Delta ADC\) có:
\(AB=AD\) (do \(\Delta ABD\) đều)
\(\widehat{EAB}=\widehat{DAC}\left(cmt\right)\)
\(AE=AC\) (do \(\Delta ACE\) đều)
\(\Rightarrow\Delta ABE=\Delta ADC\left(c-g-c\right)\)
b) Gọi \(F\) là giao điểm của \(CA\) và \(DE\)
Ta có:
\(\widehat{FAD}=\widehat{FAB}-\widehat{DAB}=\widehat{CAB}-\widehat{DAB}=90^0-60^0=30^0\)
\(\widehat{EAF}+\widehat{CAE}=180^0\) (kề bù)
\(\Rightarrow\widehat{EAF}=180^0-\widehat{CAE}=180^0-60^0=120^0\)
\(\Rightarrow\widehat{EAD}=\widehat{EAF}+\widehat{FAD}=120^0+30^0=150^0\)
\(\Rightarrow\widehat{EAD}=\widehat{EAB}=150^0\)
Xét \(\Delta ADE\) và \(\Delta ABE\) có:
\(AD=AB\left(cmt\right)\)
\(\widehat{EAD}=\widehat{EAB}\left(cmt\right)\)
\(AE\) là cạnh chung
\(\Rightarrow\Delta ADE=\Delta ABE\left(c-g-c\right)\)
\(\Rightarrow DE=BE\) (hai cạnh tương ứng)
Gọi A là biến cố "Số xuất hiện là số nguyên tố"
=>A={2;3;5;7}
=>n(A)=4
=>\(P_A=\dfrac{4}{10}=\dfrac{2}{5}\)
Bài 13:
a/\(\dfrac{5}{3}=\dfrac{x}{6}\)
\(\Rightarrow x=\dfrac{5.6}{3}=10\)
b/\(\left(4x+3\right)\left(2-x\right)\)
\(=8x-4x^2+6-3x\)
\(=-4x^2+5x+6\)
Bài 14:
Gọi x, y(quyển sách) lần lượt là số quyển sách hai lớp 7A và 7B quyên góp được.(x, y\(\in N\)*; \(y>8\))
Do số sách tỉ lệ thuận với số học sinh của lớp nên: \(\dfrac{x}{32}=\dfrac{y}{36}\)
Do lớp 7A quyên góp được ít hơn lớp 7B là 8 quyển sách nên: \(y-x=8\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{32}=\dfrac{y}{36}=\dfrac{y-x}{36-32}=\dfrac{8}{4}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot32=64\\y=2\cdot36=72\end{matrix}\right.\)
Vậy ...
Bài 13:
a: \(\dfrac{5}{3}=\dfrac{x}{6}\)
=>\(x=5\cdot\dfrac{6}{3}=5\cdot2=10\)
b: (4x+3)(2-x)
\(=4x\cdot2-4x\cdot x+3\cdot2-3\cdot x\)
\(=8x-4x^2+6-3x\)
\(=-4x^2+5x+6\)
a: Sửa đề: KN\(\perp\)FD
Xét ΔFEK vuông tại E và ΔFNK vuông tại N có
FK chung
\(\widehat{EFK}=\widehat{NFK}\)
Do đó: ΔFEK=ΔFNK
\(42\cdot53+47\cdot156-47\cdot114\)
\(=42\cdot53+47\left(156-114\right)\)
\(=42\cdot53+47\cdot42\)
\(=42\left(53+47\right)=42\cdot100=4200\)
\(42.53+47.156-47.114\)
\(=42.53+47.\left(156-114\right)\)
\(=42.53+47.42\)
\(=42.\left(47+53\right)\)
\(=42.100\)
\(=4200\)
Bài 3:
a: \(f\left(x\right)=3x^2-7+5x-6x^2+4x^3+8+5x^5+x^3\)
\(=5x^5+\left(4x^3+x^3\right)+\left(3x^2-6x^2\right)+5x+\left(-7+8\right)\)
\(=5x^5+5x^3-3x^2+5x+1\)
\(g\left(x\right)=x^2-7x+5x-7x^2+2x^3+7x+10x^5-x^3+2\)
\(=10x^5+\left(-x^3+2x^3\right)+\left(x^2-7x^2\right)+\left(-7x+5x+7x\right)+2\)
\(=10x^5+x^3-5x^2+5x+2\)
b: h(x)=f(x)+g(x)
\(=5x^5+5x^3-3x^2+5x+1+10x^5+x^3-5x^2+5x+2\)
\(=15x^5+6x^3-8x^2+10x+3\)
k(x)=2f(x)-g(x)
\(=2\left(5x^5+5x^3-3x^2+5x+1\right)-\left(10x^5+x^3-5x^2+5x+2\right)\)
\(=10x^5+10x^3-6x^2+10x+2-10x^5-x^3+5x^2-5x-2\)
\(=9x^3-x^2+5x\)
c: \(h\left(1\right)=15\cdot1^5+6\cdot1^3-8\cdot1^2+10\cdot1+3\)
=15+6-8+10+3
=13+13
=26
d: Đặt K(x)=0
=>\(9x^3-x^2+5x=0\)
=>\(x\left(9x^2-x+5\right)=0\)
mà \(9x^2-x+5>0\forall x\)
nên x=0
Câu 1:
a: Xét ΔAHB và ΔAHC có
AB=AC
BH=CH
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{AHB}=\widehat{AHC}\)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
=>AH\(\perp\)BC
b: Xét ΔIBC có
IH là đường cao
IH là đường trung tuyến
Do đó: ΔIBC cân tại I