Cho 2 biểu thức:\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}B=\dfrac{-5}{\sqrt{x}+1}\)
Tính gía trị nhỏ nhất của biểu thức P=\(\sqrt{x}\) -A.B
giusp mình vs ạ , mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dây dài nhất đi qua M là đường kính đi qua M của đường tròn.
Dây ngắn nhất đi qua M là dây đi qua M và vuông góc với OM tại M
Dộ dài dây dài nhất đi qua M là: 13 x 2 = 26 (cm)
Độ dài của dây ngắn nhất đi qua M là: CD = CM x 2
CD = 2x \(\sqrt{CO^2-OM^2}\)
CD = 2x\(\sqrt{13^2-5^2}\)
CD = 24 (cm)
Từ những lập luận trên ta có những dây đi qua M có độ dài là số tự nhiên là những dây có độ dài lần lượt là 24cm; 25cm; 26cm
Vậy có 3 dây đi qua M và có độ dài là số tự nhiên.
(d) cắt trục Ox nên ta có phương trình hoành độ:
(k - 1)\(x\) - 4 = 0 (k ≠ 1)
(k - 1)\(x\) = 4
\(x\) = \(\dfrac{4}{k-1}\)
Theo bài ra ta có:
\(\dfrac{4}{k-1}\) ≤ 1
\(\dfrac{4}{k-1}\) - 1 ≤ 0
\(\dfrac{4-k+1}{k-1}\) ≤ 0
\(\dfrac{5-k}{k-1}\) ≤ 0
A = \(\dfrac{5-k}{k-1}\) ≤ 0
lập bảng xét dấu ta có:
k | 1 5 |
5 - k | + + 0 - |
k - 1 | - 0 + + |
A = \(\dfrac{5-k}{k-1}\) | - || + 0 - |
Theo bảng trên ta có: k < 1 hoặc k ≥ 5
(d) cắt Ox nên ta có phương trình hoành độ:
(k - 1)\(x\) - 4 = 0
(k - 1)\(x\) = 4
\(x\) = \(\dfrac{4}{k-1}\) (k ≠ 1)
Theo bài ra ta có:
\(\dfrac{4}{k-1}\) ≤ 1
⇒ \(\dfrac{4}{k-1}\) - 1 ≤ 0
\(\dfrac{4-k-1}{k-1}\) ≤ 0
\(\dfrac{5-k}{k-1}\) ≤ 0
A = \(\dfrac{5-k}{k-1}\) ≤ 0
Lập bảng ta có:
k | 1 5 |
5 - k | + + 0 - |
k - 1 | - 0 + + |
\(\dfrac{5-k}{k-1}\) | - || + 0 - |
Theo bảng trên ta có: 1 < k hoặc k ≥ 5
Kl:...
Bài 2:
Đổi 7h12'=7,2 h
Giả sử trong 1 giờ người thứ nhất làm được $a$ phần công việc và người thứ 2 làm được $b$ phần công việc.
Theo bài ra ta có:
\(\left\{\begin{matrix}\ 7,2a+7,2b=1\\ 4a+3b=\frac{1}{2}\end{matrix}\right.\Rightarrow a=\frac{1}{12}; b=\frac{1}{18}\)
Người 1 làm xong công việc trong: $1: \frac{1}{12}=12$ (giờ)
Người 2 làm xong công việc trong: $1: \frac{1}{18}=18$ (giờ)
Bài 3:
Gọi số sản phẩm trogn tháng đầu mỗi tổ sản xuất được lần lượt là $a,b$ (sản phẩm)
Theo bài ra ta có:
\(\left\{\begin{matrix} a+b=800\\ 1,15a+1,2b=945\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=300\\ b=500\end{matrix}\right.\) (sản phẩm)
Bạn kiểm tra lại xem đã viết đúng đề chưa vậy?