K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2023

Ta có \(2016^{2017}=\left(2000+16\right)^{2017}\) \(=1000P+16^{2017}\)

Suy ra 3 chữ số tận cùng của số đã cho chính là 3 chữ số tận cùng của \(N=16^{2017}\).

 Dễ thấy chữ số tận cùng của N là 6.

 Ta tính thử một vài giá trị của \(16^n\):

 \(16^1=16;16^2=256;16^3=4096;16^4=65536\)\(;16^5=1048576\)\(16^6=16777216\);...

 Từ đó ta có thể dễ dàng dự đoán được quy luật sau: \(16^{5k+2}\) có chữ số thứ hai từ phải qua là 5 với mọi số tự nhiên k.    (1)

 Chứng minh: (1) đúng với \(k=0\).

 Giả sử (*) đúng đến \(k=l\ge0\). Khi đó \(16^{5l+2}=100Q+56\). Ta cần chứng minh (1) đúng với \(k=l+1\). Thật vậy, \(16^{5\left(l+1\right)+2}=16^{5l+2}.16^5\) \(=\left(100Q+56\right)\left(100R+76\right)\) \(=10000QR+7600Q+5600R+4256\) có chữ số thứ hai từ phải qua là 5. 

 Vậy (*) đúng với \(k=l+1\), vậy (*) được chứng minh. Do \(N=16^{2017}=16^{5.403+2}\) nên có chữ số thứ 2 từ phải qua là 5.

 Ta lại thử tính một vài giá trị của \(16^{5k+2}\) thì thấy:

\(16^2=256;16^7=...456;16^{12}=...656;16^{17}=...856;...\)

 Ta lại dự đoán được \(16^{25u+17}\) có chữ số thứ 3 từ phải sang là 8 với mọi số tự nhiên \(u\).  (2)

 Chứng minh: (2) đúng với \(u=0\) 

 Giả sử (2) đúng đến \(u=v\ge0\). Khi đó \(16^{25u+17}=1000A+856\). Cần chứng minh (2) đúng với \(u=v+1\). Thật vậy:

 \(16^{25\left(u+1\right)+17}=16^{25u+17}.16^{25}\) \(=\left(1000A+856\right)\left(1000B+376\right)\) 

\(=1000C+321856\) có chữ số thứ 3 từ phải sang là 856.

 Vậy khẳng định đúng với \(u=v+1\) nên (2) được cm.

 Do đó \(N=16^{2017}=16^{25.80+17}\) có chữ số thứ 3 từ phải qua là 8.

 Vậy 3 chữ số tận cùng bên phải của số đã cho là \(856\)

 

 

30 tháng 12 2023

Ta tính một vài giá trị đầu của Un:

\(U_1=3;U_2=7;U_3=15;U_4=35;U_5=83\)

Đặt \(U_{n+1}=aU_n+bU_{n-1}+c\) (*)

Khi đó thay lần lượt \(n=2,n=3,n=4\) vào (*), ta có:

\(\left\{{}\begin{matrix}15=7a+3b+c\\35=15a+7b+c\\83=35a+15b+c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\\c=-2\end{matrix}\right.\)

Do đó \(U_{n+1}=2U_n+U_{n-1}-2\)

30 tháng 12 2023

a) tanB = AC/AB = 1/2

b) ∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= (2AC)² + AC²

= 5AC²

⇒ AC² = BC²/5

= 25/5

= 5

⇒ AC = √5

3 tháng 1 2024

vậy tính tanC sao ạ

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Tìm m để biểu thức thế nào hả bạn? Bạn xem lại đề.

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

Đổi 45'=0,75h và 30'=0,5h
Gọi vận tốc ban đầu là $a$ (km/h) và thời gian đi quãng đường là $b$ (giờ)

Độ dài quãng đường AB là:

$AB=ab = (a-10)(b+0,75)=(a+10)(b-0,5)$

$\Rightarrow ab=ab+0,75a-10b-7,5=ab-0,5a+10b-5$

$\Rightarrow 0,75a-10b=7,5$ và $-0,5a+10b=5$

$\Rightarrow a=50; b=3$ 

Vậy vận tốc dự định là 50 km/h, thời gian dự định là 3h

30 tháng 12 2023

Đổi 45 phút = 0,75 giờ; 30 phút = 0,5 giờ; Gọi vận tốc ban đầu, thời gian ban đầu lần lượt là: \(x\) (km/h); t (giờ); \(x\) > 0; t > 0,5 

Thì vận tốc lúc tăng, thời gian đi hết quãng đường với vận tốc tăng đó lần lượt là: \({}\)\(x\) + 10 (km/h); t  - 0,5 (giờ)

Và vận tốc lúc giảm; thời gian đi hết quãng đường với vận tốc giảm đó lần lượt là: \(x\) - 10 (km/h); t + 0,75 (giờ)

Do cùng một quãng đường vận tốc tỉ lệ nghịch với thời gian nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{x+10}{x}=\dfrac{t}{t-0,5}\left(1\right)\\\dfrac{x-10}{x}=\dfrac{t}{t+0,75}\end{matrix}\right.\)  cộng vế với vế ta có:  \(\dfrac{t}{t-0,5}\) + \(\dfrac{t}{t+0,75}\)= 2

⇒ 1 + \(\dfrac{0,5}{t-0,5}\)+ 1 -  \(\dfrac{0,75}{t+0,75}\) = 2 ⇒\(\dfrac{0,5}{t-0,5}\)=\(\dfrac{0,75}{t+0,75}\) 

⇒ 0,5.(t + 0,75) = 0,75.(t - 0,5)   ⇒ 0,5t + 0,375 = 0,75t - 0,375

⇒ 0,75t - 0,5t = 0,375 + 0,375 ⇒ 0,25t = 0,75 ⇒ t = 3; 

Thay t = 3 vào (1) ta có: \(\dfrac{x+10}{x}\) = \(\dfrac{3}{3-0,5}\) = 1,2  

⇒ \(x\) + 10 = 1,2\(x\) ⇒ 1,2\(x\) - \(x\) = 10 ⇒ 0,2\(x\) = 10 ⇒ \(x\) = 10: 0,2 = 50

Kết luận:...

 

 

 

 

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
a. Đề không đầy đủ. Bạn xem lại

b. Để hàm (1) nghịch biến thì: $m+1<0\Leftrightarrow m<-1$

c. Với $m=2$ thì hàm (1) là: $y=3x-2$

PT hoành độ giao điểm của $y=3x-2$ và $y=x-1$ là:

$3x-2=x-1$

$\Leftrightarrow 2x=1$

$\Leftrightarrow x=\frac{1}{2}$

$y=x-1=\frac{1}{2}-1=\frac{-1}{2}$

Vậy giao điểm của $y=3x-2$ và $y=x-1$ là: $(\frac{1}{2}; \frac{-1}{2})$