Chứng minh rằng:
\(\frac{12}{1.4.7}+\frac{12}{4.7.10}+\frac{12}{7.10.13}+...+\frac{12}{54.57.60}< \frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B C A D
Vì AD là phân giác \(\widehat{BAC}\)\(\Rightarrow\)\(\widehat{DAC}=\widehat{DAB}=36\)độ
Xét \(\Delta ABD\)có:
\(\widehat{ABD}+\widehat{BAD}+\widehat{ADB}=180\)độ (Tổng 3 góc trong một tam giác)
\(\Rightarrow75+36+\widehat{ADB}=180\)
\(\Rightarrow111+\widehat{ADB}=180\)
\(\Rightarrow\widehat{ADB}=180-111=69\)độ
Bậc của đơn thức trên ( bậc của hạng tử có bậc cao nhất trong dạng thu gọn) là 3
ĐS :\(3\)
\(\frac{a+b+c}{a+b-c}=\frac{a+b-c}{a-b-c}\)
\(\Leftrightarrow\frac{a+b-c+2c}{a+b-c}=\frac{a-b-c+2b}{a-b-c}\)
\(\Leftrightarrow1+\frac{2c}{a+b-c}=1+\frac{2b}{a-b-c}\)
\(\Leftrightarrow\frac{2c}{a+b-c}=\frac{2b}{a-b-c}\)
Đến đây mình trịu
chỉ biết C = 0 thôi
a) xét tg AMC và tg ABN có
MA=BA(gt)
CA=AN(gt)
ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)
=>(kết luận)...
b)gọi I là giao điểm của MC và BN
gọi giao điểm của BA và MI là F
vì ΔAMC=ΔABNΔAMC=ΔABNnên
ˆFMA=ˆFBIFMA^=FBI^
mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O
=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O
Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O
Mà ˆIMB+ˆMBIIMB^+MBI^=900
=>...
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
A B C E
Gọi biểu thức là A, ta có:
A = \(\frac{12}{1.4.7}+\frac{12}{4.7.10}+\frac{12}{7.10.13}+...+\frac{12}{54.57.60}=2\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+\frac{6}{7.10.13}+...+\frac{6}{54.57.60}\right)\)
A = \(2\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}-\frac{1}{10.13}+...+\frac{1}{54.57}-\frac{1}{57.60}\right)\)
A = \(2\left(\frac{1}{1.4}-\frac{1}{57.60}\right)=2\left(\frac{427}{1710}\right)=\frac{427}{855}< \frac{427}{854}=\frac{1}{2}\)
Vậy A < \(\frac{1}{2}\)(điều cần chứng minh)