cho điểm A nằm trong góc nhọn xOy,lấy trên mặt phẳng các điểm D và E sao cho Ox là đường trung trực của AD, Oy là đường trung trực của AE. Cho M thuộc Ox N thuộc Oy
a, CMR chu vi tam giác AMN = DM+MN+NE
b, Các điểm M,N nằm ở vị trí nào trên Ox, Oy thì chu vi tam giác AMN nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

H(1)=12+a.1+b=1=> a+b=0 => a=-b (1)
H(-1)=(-1)2+a.(-1)+b=3 <=> b-a=2
Thay (1) vào ta được: b-(-b)=2
<=> 2b=2 => b=1; a=-1
Đs: a=-1; b=1

Sửa đề: CM: \(a^2+b^2=2\)
Ta có:
\(a^{2006}+b^{2006}=a^{2004}+b^{2004}\)
Đặt \(\hept{\begin{cases}a^2=x\\b^2=y\end{cases}}\)thì ta có
\(x^{1003}+y^{1003}=x^{1002}+y^{1002}\)
\(\Leftrightarrow\left(x^{1003}+y^{1003}+x^{1002}y+xy^{1002}\right)-xy\left(x^{1002}+y^{1002}\right)=x^{1002}+y^{1002}\)
\(\Leftrightarrow\left(x^{1002}+y^{1002}\right)\left(x+y\right)-xy\left(x^{1002}+y^{1002}\right)=x^{1002}+y^{1002}\)
\(\Leftrightarrow\left(x^{1002}+y^{1002}\right)\left(x+y-xy-1\right)=0\)
\(\Leftrightarrow x+y-xy-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(1-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\y=1\end{cases}}\)
Thế ngược lại bài ban đầu ta tìm được
\(\hept{\begin{cases}x=1\\y=1\end{cases}}\)(vì x, y là số dương)
Vậy \(a^2+b^2=2\)
vẫn cs khả năng a2 + b2 < 2 . vì nếu x = 1 ; y = 0 thì (x-1)(1-y) = 0