Ai có đáp án đề này ko.
Cho m xin ngay nhé
Trg 15 p nữa p có rồi
Làm ơn nhanh nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho mình hỏi ở đây có ai tên là Đặng Hà Vy ko?Lên tiếng xem nào!
1) ĐK \(\hept{\begin{cases}x\ne y\\y\ge-1\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{1}{x-y}=a\left(a\ne0\right)\\\sqrt{y+1}=b\left(b\ge0\right)\end{cases}}\)hệ phương trình đã cho trở thành
\(\hept{\begin{cases}2a+b=4\\a-3b=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+b=4\\2a-6b=-10\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=14\\2a+b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}\left(tm\right)}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x-y}=1\\\sqrt{y+1}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=1\\y+1=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\left(tm\right)\)
Vậy ...
Gọi số học sinh dự tuyển của trường là (học sinh) ()
Số học sinh dự tuyển của trường là (học sinh) ()
Vì tổng số học sinh dự thi của hai trường là 750 học sinh nên ta có phương trình: (1)
Số học sinh trúng tuyển của trường là: (học sinh)
Số học sinh trúng tuyển của trường là: (học sinh)
Vì tổng số học sinh trúng tuyển của cả hai trường là học sinh nên ta có phương trình
(2)
Từ (1) và (2) ta có hệ phương trình
Vậy số học sinh dự thi của trường là học sinh
Số học sinh dự thi của trường là học sinh.
a, Ta có : \(x=9\Rightarrow\sqrt{x}=3\)
Thay vào biểu thức A ta được : \(A=\frac{2}{3-2}=2\)
b, Với \(x\ge0;x\ne4\)
\(B=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{4\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(\sqrt{x}-2\right)+4\sqrt{x}}{x-4}\)
\(=\frac{x+2\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}=\frac{\sqrt{x}}{\sqrt{x}-2}\)( đpcm )
c, Ta có : \(A+B=\frac{3x}{\sqrt{x}-2}\)hay
\(\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{2+\sqrt{x}}{\sqrt{x}-2}=\frac{3x}{\sqrt{x}-2}\)
\(\Rightarrow2+\sqrt{x}=3x\Leftrightarrow3x-2-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}=3x-2\Leftrightarrow x=9x^2-12x+4\)
\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\Leftrightarrow x=\frac{4}{9}\left(ktm\right);x=1\)( đk : \(x\ge\frac{2}{3}\))
Bài 1 :
a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)
Thay vào biểu thức A ta được :
\(A=\frac{2+4}{4+4}=\frac{6}{8}=\frac{3}{4}\)
b, \(x\ge0;x\ne16\)
\(B=\frac{x}{x-16}-\frac{2}{\sqrt{x}-4}-\frac{2}{\sqrt{x}+4}\)
\(=\frac{x-2\sqrt{x}-8-2\sqrt{x}+8}{x-16}=\frac{x-4\sqrt{x}}{x-16}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}\pm4\right)}=\frac{\sqrt{x}}{\sqrt{x}+4}\)
c, Ta có : \(C=A.B=\frac{\sqrt{x}}{\sqrt{x}+4}.\frac{\sqrt{x}+4}{x+4}=\frac{\sqrt{x}}{x+4}\le0\)
Dấu ''='' xảy ra khi \(x=0\)( em ko chắc ý c lắm vì cũng chưa gặp bh )
trình bày như này thì khi thế x vào mẫu nó là 0 nên băn khoăn :)
\(x+4\le0\)do \(\sqrt{x}\ge0\)\(\Leftrightarrow x\le-4\)
Ta dễ thấy điểm rơi đạt tại \(x=2;y=3;z=4\)
Áp dụng bất đẳng thức AM-GM :
\(A=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\frac{1}{4}\left(x+2y+3z\right)\)
\(\ge2\left(\frac{3}{2}+\frac{3}{2}+1\right)+\frac{1}{4}.20=13\)
Vậy Min A = 13 <=> x = 2 ; y = 3 ; z = 4