Phân tích đa thức thành nhân tử:
4/ 4x2 – 25 + (2x+7)(5-2x)
5/ a2x2 - a2y2 – b2x2 + b2y2
6/ x2 – y2 + 12y-36
7/ (x + 2)2 – x2 + 2x – 1
8/ 16x2 – y2
9/ 1 + 27x3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
24.
Ta có: \(3k^2+3k+1=k^3+3k^2+3k+1-k^3=\left(k+1\right)^3-k^3\)
Do đó \(a_k=\frac{\left(k+1\right)^3-k^3}{\left(k^2+k\right)^3}=\frac{\left(k+1\right)^3-k^3}{k^3.\left(k+1\right)^3}=\frac{1}{k^3}-\frac{1}{\left(k+1\right)^3}\)
Áp dụng ta được:
\(P=a_1+a_2+...+a_9\)
\(=\frac{1}{1^3}-\frac{1}{2^3}+\frac{1}{2^3}-\frac{1}{3^3}+...+\frac{1}{9^3}-\frac{1}{10^3}\)
\(=1-\frac{1}{10^3}=\frac{999}{1000}\)
23. Ta có:
\(B=\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}.\frac{5^2}{\left(6^2-1\right)}.....\frac{\left(2n+1\right)^2}{\left(2n+2\right)^2-1}\)
\(=\frac{1.1.3.3.5.5.....\left(2n+1\right)\left(2n+1\right)}{\left(1.3\right).\left(3.5\right).\left(5.7\right).....\left[\left(2n+1\right)\left(2n+3\right)\right]}\)
\(=\frac{\left[1.3.5.....\left(2n+1\right)\right].\left[1.3.5.....\left(2n+1\right)\right]}{\left[1.3.5.....\left(2n+1\right)\right].\left[3.5.7.....\left(2n+3\right)\right]}\)
\(=\frac{1}{2n+3}\)
\(abc=a+b+c\Leftrightarrow\frac{abc}{abc}=\frac{a+b+c}{abc}\)
\(\Leftrightarrow1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=Q\)
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Rightarrow P=3^2-2Q=9-2=7\)
\(4x^2-25+\left(2x+7\right).\left(5-2x\right)\)
\(=\left(2x+5\right).\left(2x-5\right)-\left(2x+7\right).\left(2x-5\right)\)
\(=\left(2x+5-2x-7\right).\left(2x-5\right)\)
\(=-2.\left(2x-5\right)\)
\(a^2x^2-a^2x^2-b^2x^2+b^2y^2\)
\(=a^2.\left(x^2-y^2\right)-b^2.\left(x^2-y^2\right)\)
\(=\left(a^2-b^2\right).\left(x^2-y^2\right)\)
\(=\left(a-b\right).\left(a+b\right).\left(x-y\right).\left(x+y\right)\)
\(x^2-y^2+12y-36\)
\(=x^2-\left(y^2-12y+36\right)\)
\(=x^2-\left(y-6\right)^2\)
\(=\left(x-y+6\right).\left(x+y-6\right)\)
\(\left(x+2\right)^2-x^2+2x-1\)
\(=\left(x+2\right)^2-\left(x^2-2x+1\right)\)
\(=\left(x+2\right)^2-\left(x-1\right)^2\)
\(=[x+2-\left(x-1\right)].[x+2+\left(x-1\right)]\)
\(=\left(x+2-x+1\right).\left(x+2+x-1\right)\)
\(=3.\left(2x+1\right)\)
\(16x^2-y^2=\left(4x\right)^2-y^2=\left(4x-y\right).\left(4x+y\right)\)
\(1+27x^3=1^3+\left(3x\right)^3=\left(1+3x\right).\left(1-3x+9x^2\right)\)