Tìm số tự nhiên bé nhất mà lập phương số đó có \(4\) chữ số cuối bên phải đều là chữ số \(3\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{25112012}{11}=2282911-\dfrac{9}{11}\Rightarrow a=2282911\)
\(\dfrac{9}{11}=\dfrac{1}{\dfrac{11}{9}}=\dfrac{1}{1+\dfrac{2}{9}}=\dfrac{1}{1+\dfrac{1}{\dfrac{9}{2}}}=\dfrac{1}{1+\dfrac{1}{4+\dfrac{1}{2}}}\)
\(\Rightarrow b=1;c=4;d=2\)
Áp dụng BĐT AM-GM ta có
x^3/1+y +1+y/4+1/2 >= 3 căn 3(x^3/8) =3x/2
Tương tự: y^3/1+z + 1+z/4 +1/2 >= 3z/2
z^3/1+x +1+x/4 + 1/2 >= 3z/2
=> P + x+y+z+3/4 +3/2 >= 3(x+y+z)/2
<=> P >= [5(x+y+z)-3]/4 -3/2
<=> P >= 5(x+y+z)/4 -9/4
Mặt khác x+y+z>=xy+yz+zx>=3
( bạn tự chứng minh nhé)
=> P>= 15/4 -9/4=3/2
=>P >=3/2
Dấu = xảy ra khi x=y=z=1
Nhớ tick cho mình nhé
Áp dụng BĐT AM-GM ta có
x^3/1+y +1+y/4+1/2 >= 3 căn 3(x^3/8) =3x/2
Tương tự: y^3/1+z + 1+z/4 +1/2 >= 3z/2
z^3/1+x +1+x/4 + 1/2 >= 3z/2
=> P + x+y+z+3/4 +3/2 >= 3(x+y+z)/2
<=> P >= [5(x+y+z)-3]/4 -3/2
<=> P >= 5(x+y+z)/4 -9/4
Mặt khác x+y+z>=xy+yz+zx>=3
( bạn tự chứng minh nhé)
=> P>= 15/4 -9/4=3/2
=>P >=3/2
Dấu = xảy ra khi x=y=z=1
Nhớ tick cho mình nhé
4c.
Do M là giao điểm 2 tiếp tuyến tại A và B, theo tính chất hai tiếp tuyến cắt nhau
\(\Rightarrow\widehat{OMN}=\widehat{OMB}\)
Mà \(MB||NO\) (cùng vuông góc BC) \(\Rightarrow\widehat{OMB}=\widehat{MON}\) (so le trong)
\(\Rightarrow\widehat{OMN}=\widehat{MON}\)
\(\Rightarrow\Delta OMN\) cân tại N
\(\Rightarrow MN=ON\)
Cũng theo 2 t/c 2 tiếp tuyến cắt nhau \(\Rightarrow MA=MB\)
Do MD là tiếp tuyến của (O) tại A \(\Rightarrow OA\perp MD\)
Áp dụng hệ thức lượng trong tam giác vuông OND với đường cao OA:
\(ON^2=NA.ND\Rightarrow MN^2=NA.ND\)
\(\Rightarrow MN^2=\left(MA-MN\right).ND=\left(MB-MN\right).ND\)
\(\Rightarrow MN^2=MB.ND-MN.ND\)
\(\Rightarrow MB.ND-MN^2=MN.ND\)
\(\Rightarrow\dfrac{MB.ND-MN^2}{MN.ND}=1\)
\(\Rightarrow\dfrac{MB}{MN}-\dfrac{MN}{ND}=1\) (đpcm)
\(S_{ABC}=\dfrac{AB^2\sqrt{3}}{4}\) theo công thức diện tích tam giác đều
Bán kính các hình tròn \(R=\dfrac{2}{3}.\dfrac{AB\sqrt{3}}{2}=\dfrac{AB\sqrt{3}}{3}\)
Do ABC đều \(\Rightarrow sđ\stackrel\frown{AB}=sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}=\dfrac{360^0}{3}=120^0\)
Gọi O là tâm đường tròn bên trái
\(\Rightarrow sđ\stackrel\frown{AI}=\dfrac{1}{2}sđ\stackrel\frown{AB}=60^0\Rightarrow S_{quạt-OAI}=\dfrac{1}{6}S_{tròn}\) \(=\dfrac{1}{6}.\pi\left(\dfrac{AB\sqrt{3}}{3}\right)^2=\dfrac{\pi.AB^2}{18}\)
\(\Delta OAI\) cân tại O có 1 góc bằng 60 độ nên OAI là tam giác đều
\(\Rightarrow S_{\Delta OAI}=\dfrac{OA^2\sqrt{3}}{4}=\dfrac{R^2\sqrt{3}}{4}=\dfrac{AB^2\sqrt{3}}{12}\)
\(\Rightarrow\) Diện tích phần tô đen:
\(S=S_{ABC}-6\left(S_{quạt-OAI}-S_{\Delta OAI}\right)=\dfrac{AB^2\sqrt{3}}{4}-6\left(\dfrac{\pi AB^2}{18}-\dfrac{AB^2\sqrt{3}}{12}\right)\)
\(=\left(\dfrac{3\sqrt{3}}{4}-\dfrac{\pi}{3}\right)AB^2\)
số tự nhiên bé nhất mà lập phương số đó có 44 chữ số cuối bên phải là chữ số 33 là số: 17
là số 17