Giải phương trình: \(\sqrt{x-2}-\sqrt{4-x}=2x^2-5x-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
FN là tiếp tuyến tại N \(\Rightarrow\widehat{FNO}=90^0\)
\(\Rightarrow\) 2 điểm P và N cùng nhìn OF dưới 1 góc vuông nên tứ giác ONFP nội tiếp đường tròn đường kính ON
b.
Trong tam giác MQF, do \(PQ\perp ME\) và \(MN\perp FQ\Rightarrow O\) là trực tâm
\(\Rightarrow FO\perp MQ\) tại D
Hai điểm D và N cùng nhìn MF dưới 1 góc vuông
\(\Rightarrow DNFM\) nội tiếp
\(\Rightarrow\widehat{FDN}=\widehat{FMN}\) (cùng chắn FN) (1)
Hai điểm D và P cùng nhìn OM dưới 1 góc vuông
\(\Rightarrow MDOP\) nội tiếp
\(\Rightarrow\widehat{FMN}=\widehat{FDP}\) (cùng chắn OP) (2)
(1);(2) \(\Rightarrow\widehat{FDP}=\widehat{FDN}\)
\(\Rightarrow DF\) là phân giác của \(\widehat{PDN}\)
c.
Do MN là đường kính và E thuộc đường tròn \(\Rightarrow\widehat{MEN}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{MEN}=90^0\Rightarrow NE\perp ME\)
Áp dụng hệ thức lượng trong tam giác vuông MNF với đường cao NE:
\(MN^2=ME.MF\Rightarrow\left(2R\right)^2=ME.MF\)
\(\Rightarrow ME.MF=4R^2\)
Từ đó áp dụng BĐT Cô-si ta có:
\(MF+2ME\ge2\sqrt{MF.2ME}=2\sqrt{8R^2}=4R\sqrt{2}\)
Dấu "=" xảy ra khi \(MF=2ME\Rightarrow E\) là trung điểm MF
\(\Rightarrow NE\) là trung tuyến ứng với cạnh huyền
\(\Rightarrow NE=\dfrac{1}{2}MF=ME\)
\(\Rightarrow E\) là điểm chính giữa cung MN
\(f\left(-1\right)=-a+1\)
\(f\left(f\left(-1\right)\right)=f\left(-a+1\right)=\dfrac{a}{-a+1}+1=\dfrac{1}{-a+1}\)
\(f\left(f\left(-1\right)\right)+a=0\Rightarrow\dfrac{1}{-a+1}+a=0\)
\(\Rightarrow-a^2+a+1=0\) (\(a\ne1\))
\(\Rightarrow a=\dfrac{1\pm\sqrt{5}}{2}\)
Cho dãy số \(u_1=144;u_2=233;...;u_{n+1}=u_n+u_{n-1}\) với \(n\ge2\). Tính \(u_{37};u_{38};u_{39}\).
\(u_3=u_2+u_1\)
\(u_4=u_3+u_2=\left(u_2+u_1\right)+u_2=2u_2+u_1=\left(4-2\right)u_2+\left(4-3\right)u_1\)
\(u_5=u_4+u_3=\left(4-2\right)u_2+\left(4-3\right)u_1+u_2+u_1=\left(5-2\right)u_2+\left(5-3\right)u_1\)
...
\(\Rightarrow u_n=\left(n-2\right)u_2+\left(n-3\right)u_1\)
\(\Rightarrow u_{37}=35u_2+34u_1=...\)
Thực hiện các phép chia đa thức, thu được:
\(f\left(x\right)=\left(x+3\right)\left[x^2+\left(b-3\right)x+\left(c-3b+9\right)\right]+d-3c+9b-27\)
\(f\left(x\right)=\left(x-4\right)\left[x^2+\left(b+4\right)x+c+4b+16\right]+d+4c+16b+64\)
\(f\left(x\right)=\left(x+3\right)\left(x-4\right)\left(x+b+1\right)+\left(c+b+13\right)x+d+12b+12c\)
Theo đề bài, ta có \(d-3c+9b-27=1\) (1)
\(d+4c+16b+64=8\) (2)
\(b+1=-3\) \(\Leftrightarrow b=-4\)
và \(\left(b+c+13\right)x+d+12b+12c\ne0\) (3)
Thế \(b=-4\) vào (1) và (2), thu được
\(d-3c-36-27=1\Leftrightarrow d-3c=64\)
và \(d+4c-64+64=8\) \(\Leftrightarrow d+4c=8\)
Từ đó suy ra \(\left(c;d\right)=\left(-8;40\right)\)
Thử lại, thấy thỏa mãn.
Do đó, \(\left(b,c,d\right)=\left(-4,-8,40\right)\)
\(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2+4>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
- Với
\(x_1^2-2x_2=7\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2-2x_2=7\)
\(\Leftrightarrow2\left(m-1\right)x_1-\left(2m-3\right)-2x_2=7\)
\(\Leftrightarrow2mx_1-2\left(x_1+x_2\right)=2m+4\)
\(\Leftrightarrow mx_1-2\left(m-1\right)=m+2\)
\(\Leftrightarrow mx_1=3m\)
- Với \(m=0\) thỏa mãn
- Với \(m\ne0\Rightarrow x_1=3\)
Thế vào \(x_1+x_2=2\left(m-1\right)\Rightarrow x_2=2m-5\)
Thế tiếp vào \(x_1x_2=2m-3\) \(\Rightarrow3\left(2m-5\right)=2m-3\)
\(\Rightarrow m=3\)
Vậy \(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)
\(B=\sqrt{\dfrac{8+\sqrt{15}}{2}}+\sqrt{\dfrac{8-\sqrt{15}}{2}}\)
\(B=\dfrac{\sqrt{8+\sqrt{15}}}{\sqrt{2}}+\dfrac{\sqrt{8-\sqrt{15}}}{\sqrt{2}}\)
\(B=\dfrac{\sqrt{2}\cdot\sqrt{8+\sqrt{15}}}{\sqrt{2}\cdot\sqrt{2}}+\dfrac{\sqrt{2}\cdot\sqrt{8-\sqrt{15}}}{\sqrt{2}\cdot\sqrt{2}}\)
\(B=\dfrac{\sqrt{16+2\sqrt{15}}}{2}+\dfrac{\sqrt{16-2\sqrt{15}}}{2}\)
\(B=\dfrac{\sqrt{\left(\sqrt{15}\right)^2+2\cdot\sqrt{15}\cdot1+1^2}}{2}+\dfrac{\sqrt{\left(\sqrt{15}\right)^2-2\cdot\sqrt{15}\cdot1+1^2}}{2}\)
\(B=\dfrac{\sqrt{\left(\sqrt{15}+1\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2}\)
\(B=\dfrac{\sqrt{15}+1+\sqrt{15}-1}{2}\)
\(B=\dfrac{2\sqrt{15}}{2}\)
\(B=\sqrt{15}\)
a/ Ta có
\(\widehat{ADI}=\widehat{AKI}=90^o\)
=> D và K cùng nhìn AI dưới 1 góc \(90^o\) => D; K thuộc đường tròn đường kính AI => A; D; K; I cùng thuộc một đường tròn
b/ Xét tg vuông DAH và tg vuông ABC có
\(\widehat{DAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg DAH đồng dạng với ABC (g.g.g)
a/
Ta có
AE = HE; BF = HF (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau)
=> AE + BF = HE + HF = EF (dpcm)
b/ Gọi P; K; Q lần lượt là giao của OE; OM; OF với (O)
Ta có
sđ cung PA = sđ cung PH (Hai tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm chia đôi cung chắn bởi 2 tiếp điểm)
sđ cung QB = sđ cung QH (lý do như trên)
=> sđ cung PH + sđ cung QH = sđ cung PA + sđ cung QB
=> sđ cung APH = sđ cung BQH
Mà sđ cung APH + sđ cung BQH = sđ cung AKB
=> sđ cung APH = sđ cung BQH = \(\dfrac{sđcungAKB}{2}\) (1)
Ta có
sđ cung KA = sđ cung KB (Hai tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm chia đôi cung chắn bởi 2 tiếp điểm)
Mà sđ cung KA + sđ cung KB = sđ cung AKB
=> sđ cung KA = sđ cung KB = \(\dfrac{sđcungAKB}{2}\) (2)
Ta có
\(sđ\widehat{MOA}=sđcungKA=\dfrac{sđcungAKB}{2}\) (góc ở tâm đường tròn) (3)
\(sđ\widehat{FOE}=sđcungPHQ=sđcungPH+sđcungQH=\dfrac{sđcungAKB}{2}\) (góc ở tâm đường tròn) (4)
Từ (1) (2) (3) (4) \(\Rightarrow\widehat{MOA}=\widehat{FOE}\)
\(n\) chẵn \(\Rightarrow n=2k\left(k\inℤ\right)\)
Khi đó \(P=\dfrac{n}{12}+\dfrac{n^2}{8}+\dfrac{n^3}{24}\)
\(=\dfrac{k}{6}+\dfrac{k^2}{2}+\dfrac{k^3}{3}\)
\(=\dfrac{k+3k^2+2k^3}{6}\)
\(=\dfrac{k\left(2k^2+3k+1\right)}{6}\)
\(=\dfrac{k\left(2k+1\right)\left(k+1\right)}{6}\)
Nhận thấy \(k,k+1\) là 2 số nguyên liên tiếp nên \(k\left(k+1\right)\left(2k+1\right)⋮2\)
Nếu \(k\equiv0,2\left[3\right]\) thì dễ thấy \(k\left(2k+1\right)\left(k+1\right)⋮3\). Nếu \(k\equiv1\left[3\right]\) thì \(2k+1\equiv2.1+1=3\left[3\right]\) nên \(k\left(2k+1\right)\left(k+1\right)⋮3\).
Do vậy, \(k\left(k+1\right)\left(2k+1\right)⋮6\). Suy ra đpcm.
- Phenis
- 21/04/2021
Giải thích các bước giải:
Vì là tích ba số nguyên liên tiếp nên chia hết cho
Lại có là số chẵn, nên đặt , ta có:
Do là tích hai số nguyên liên tiếp nên chia hết cho 2 và chia hết cho 8
Vậy A chia hết cho 3 và 8, vậy A chia hết cho 24
là số nguyên
ĐKXĐ: \(2\le x\le4\)
\(\left(\sqrt{x-2}-1\right)+\left(1-\sqrt{4-x}\right)=2x^2-5x-3\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{x-2}+1}+\dfrac{x-3}{1+\sqrt{4-x}}=\left(x-3\right)\left(2x+1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\\dfrac{1}{\sqrt{x-2}+1}+\dfrac{1}{1+\sqrt{4-x}}=2x+1\left(1\right)\end{matrix}\right.\)
Xét (1), ta có: \(\dfrac{1}{\sqrt{x-2}+1}+\dfrac{1}{1+\sqrt{4-x}}< \dfrac{1}{0+1}+\dfrac{1}{1+0}=2\)
Do \(x\ge2\Rightarrow2x+1\ge5\)
\(\Rightarrow\dfrac{1}{\sqrt{x-2}+1}+\dfrac{1}{1+\sqrt{4-x}}< 2x+1\)
\(\Rightarrow\left(1\right)\) vô nghiệm
Vậy pt có nghiệm duy nhất \(x=3\)
\(x=3\)