K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7

A B C E D

Ta có

\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.9.12=54cm^2\)

Xét tg vuông DEC và tg vuông ABC có chung \(\widehat{C}\)

=> tg DEC đồng dạng tg ABC

\(\Rightarrow\dfrac{S_{DEC}}{S_{ABC}}=\dfrac{S_{DEC}}{54}=\left(\dfrac{CD}{AC}\right)^2=\dfrac{4}{12}=\dfrac{1}{3}\) (Hai tg đồng dạng thì tỷ số diện tích bằng bình phương tỷ số đồng dạng)

\(\Rightarrow S_{DEC}=\dfrac{54}{3}=18cm^2\)

 

25 tháng 7

`(2x - 5y)(2x + 5y)`

`= (2x)^2 - (5y)^2`

`= 4x^2 - 15y^2`

--------------------

`a^2 - b^2 = (a-b)(a+b)`

Với

`a = 2x`

`b = 5y`

23 tháng 7

\(16x^4+32x^3+24x^2+8x-15=0\\ \Leftrightarrow\left(16x^4-8x^3\right)+\left(40x^3-20x^2\right)+\left(44x^2-22x\right)+\left(30x-15\right)=0\\ \Leftrightarrow8x^3\left(2x-1\right)+20x^2\left(2x-1\right)+22x\left(2x-1\right)+15\left(2x-1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(8x^3+20x^2+22x+15\right)=0\\ \Leftrightarrow\left(2x-1\right)\left[\left(8x^3+12x^2\right)+\left(8x^2+12x\right)+\left(10x+15\right)\right]=0\\ \Leftrightarrow\left(2x-1\right)\left[4x^2\left(2x+3\right)+4x\left(2x+3\right)+5\left(2x+3\right)\right]\\ \Leftrightarrow\left(2x-1\right)\left(2x+3\right)\left(4x^2+4x+5\right)=0\)

Mà: \(4x^2+4x+5=\left(4x^2+4x+1\right)+4=\left(2x+1\right)^2+4>0\forall x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔADC có

DO,AN là các đường trung tuyến

DO cắt AN tại F

Do đó: F là trọng tâm của ΔADC
=>\(DF=\dfrac{2}{3}DO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)

Xét ΔABC có

AM,BO là các đường trung tuyến

AM cắt BO tại E

Do đó: E là trọng tâm của ΔABC

=>\(BE=\dfrac{2}{3}BO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)

Ta có: BE+EF+FD=BD

=>\(EF+\dfrac{1}{3}BD+\dfrac{1}{3}BD=BD\)

=>\(EF=BD-\dfrac{2}{3}BD=\dfrac{1}{3}BD\)

Do đó: BE=EF=FD

a: Xét ΔBDC có

M là trung điểm của CB

ME//BD

Do đó: E là trung điểm của CD

=>CE=ED

Xét ΔAME có

I là trung điểm của AM

ID//ME

Do đó: D là trung điểm của AE

=>AD=DE
mà DE=EC

nên AD=DE=EC

b: Xét ΔAME có I,D lần lượt là trung điểm của AM,AE

=>ID là đường trung bình của ΔAME

=>ME=2ID

Xét ΔBDC có

M,E lần lượt là trung điểm của CB,CD

=>ME là đường trung bình của ΔBDC

=>\(BD=2\cdot ME=2\cdot2\cdot ID=4ID\)

=>\(ID=\dfrac{1}{4}BD\)

23 tháng 7

Ta thấy :

\(45^{10}=9^{10}.5^{10}=3^{20}.5^{10}=\overline{...1}.\overline{...5}=\overline{.....5}\) (vì số tận cùng là 3 và 5)

\(5^{40}=\overline{.....5}\) (vì số tận cùng là 5)

\(\Rightarrow45^{10}-5^{40}=\overline{.....0}\)

mà \(25^{20}=5^{40}=\overline{.....5}\) (vì số tận cùng là 5)

\(\Rightarrow45^{10}-5^{40}:25^{20}=\overline{.....0}\)

\(\Rightarrow45^{10}-5^{40}⋮25^{20}\) \(\left(dpcm\right)\)

22 tháng 7

\(M=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2+2x+4\right)\)

\(=x^3-8-\left(x^3+2x^2+4x+2x^2+4x+8\right)\)

\(=x^3-8-x^3-4x^2-8x-8=-4x^2-8x-16\)