Phân tích đa thức thành nhân tử
\(x^3+x-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{15^2-9^2}=12\)
Xét ΔCHA vuông tại H và ΔCAB vuông tại A có
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCAB
=>\(\dfrac{AH}{AB}=\dfrac{CA}{CB}\)
=>\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot9}{15}=\dfrac{108}{15}=7,2\)
b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có
\(\widehat{ABD}=\widehat{HBI}\)
Do đó: ΔBAD~ΔBHI
c: Sửa đề: ΔAID cân
ΔBAD~ΔBHI
=>\(\widehat{BDA}=\widehat{BIH}\)
mà \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)
nên \(\widehat{AID}=\widehat{ADI}\)
=>ΔADI cân tại A
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE
Xét ΔBAE có
BD,AH là các đường cao
BD cắt AH tại I
Do đó: I là trực tâm của ΔBAE
=>EI\(\perp\)AB
=>EI//AC
`x^3 + 2x^2 + x + 2 = 0`
`=> (x^3 + 2x^2) + (x + 2) = 0`
`=> x^2 (x+2) + (x+2) = 0`
`=> (x^2 + 1)(x+2) = 0`
Mà `x^2 + 1 > 0`
`=> x+ 2 = 0`
`=> x = -2`
Vậy `x = - 2`
\(\left(x-5\right)^2-x^2+10x-5\\ =\left(x^2-10x+25\right)-x^2+10x-5\\ =x^2-10x+25-x^2+10x-5\\ =\left(x^2-x^2\right)+\left(10x-10x\right)+\left(25-5\right)\\ =20\)
\(\left(x+4\right)\left(x-4\right)-\left(x-3\right)^2\)
\(=x^2-16-\left(x^2-6x+9\right)\)
\(=x^2-16-x^2+6x-9\)
=6x-25
A B C E D
Ta có
\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.9.12=54cm^2\)
Xét tg vuông DEC và tg vuông ABC có chung \(\widehat{C}\)
=> tg DEC đồng dạng tg ABC
\(\Rightarrow\dfrac{S_{DEC}}{S_{ABC}}=\dfrac{S_{DEC}}{54}=\left(\dfrac{CD}{AC}\right)^2=\dfrac{4}{12}=\dfrac{1}{3}\) (Hai tg đồng dạng thì tỷ số diện tích bằng bình phương tỷ số đồng dạng)
\(\Rightarrow S_{DEC}=\dfrac{54}{3}=18cm^2\)
`(2x - 5y)(2x + 5y)`
`= (2x)^2 - (5y)^2`
`= 4x^2 - 15y^2`
--------------------
`a^2 - b^2 = (a-b)(a+b)`
Với
`a = 2x`
`b = 5y`
\(16x^4+32x^3+24x^2+8x-15=0\\ \Leftrightarrow\left(16x^4-8x^3\right)+\left(40x^3-20x^2\right)+\left(44x^2-22x\right)+\left(30x-15\right)=0\\ \Leftrightarrow8x^3\left(2x-1\right)+20x^2\left(2x-1\right)+22x\left(2x-1\right)+15\left(2x-1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(8x^3+20x^2+22x+15\right)=0\\ \Leftrightarrow\left(2x-1\right)\left[\left(8x^3+12x^2\right)+\left(8x^2+12x\right)+\left(10x+15\right)\right]=0\\ \Leftrightarrow\left(2x-1\right)\left[4x^2\left(2x+3\right)+4x\left(2x+3\right)+5\left(2x+3\right)\right]\\ \Leftrightarrow\left(2x-1\right)\left(2x+3\right)\left(4x^2+4x+5\right)=0\)
Mà: \(4x^2+4x+5=\left(4x^2+4x+1\right)+4=\left(2x+1\right)^2+4>0\forall x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(x^3+x-2\)
\(=x^3-x^2+x^2-x+2x-2\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+2\left(x-1\right)=\left(x-1\right)\left(x^2+x+2\right)\)