Bài 1. Với \(x\ge0;x\ne4\), cho biểu thức
\(A=\frac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{1}{2-\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}+3}\)
\(B=\frac{1}{x\sqrt{x}+27}\)
a, tính giá trị biểu thức khi \(B=\frac{1}{4}\)
b, Rút gọn A
c, Tìm giá trị của x để \(A>\frac{1}{2}\)
d, Với C = B : A. Tìm GTLN của biểu thức C
a) \(B=\frac{1}{\frac{1}{4}\sqrt{\frac{1}{4}}+27}=\frac{1}{\frac{1}{4}\cdot\frac{1}{2}+27}=\frac{1}{\frac{1}{8}+27}=\frac{1}{\frac{217}{8}}=\frac{8}{217}\)
b) \(A=\frac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{1}{2-\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}+3}\)
\(A=\frac{x-9+\sqrt{x}+3-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(A=\frac{x-6+\sqrt{x}-x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{3\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3}{\sqrt{x}+3}\)
c)) Với x \(\ge\)0 và x \(\ne\)4 (1)
Ta có: \(A>\frac{1}{2}\) <=> \(\frac{3}{\sqrt{x}+3}>\frac{1}{2}\)
<=> \(\sqrt{x}+3< 6\) <=> \(\sqrt{x}< 3\) <=> \(x< 9\) (2)
Từ (1) và (2) => \(0\le x< 9\)và x khác 4
d) Ta có : \(C=B:A=\frac{1}{x\sqrt{x}+27}:\frac{3}{\sqrt{x}+3}\)
\(C=\frac{1}{\left(\sqrt{x}+3\right)\left(x-3\sqrt{x}+9\right)}\cdot\frac{\sqrt{x}+3}{3}\)
\(C=\frac{1}{3\left(x-3\sqrt{x}+9\right)}=\frac{1}{3\left(x-3\sqrt{x}+\frac{9}{4}\right)+\frac{81}{4}}=\frac{1}{\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{81}{4}}\)
Do \(\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{81}{4}\ge\frac{81}{4}\) => \(C\le\frac{1}{\frac{81}{4}}=\frac{4}{81}\)
Dấu "=" xảy ra<=> \(\sqrt{x}-\frac{3}{4}=0\) <=> \(x=\frac{9}{16}\)
Vậy MaxC = 4/81 <=> x = 9/16