Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(x^2-2014x+2013\\ =x^2-2013x-x+2013\\ =\left(x^2-2013x\right)-\left(x-2013\right)\\ =x\left(x-2013\right)-\left(x-2013\right)\\ =\left(x-2013\right)\left(x-1\right)\)

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{HAB}\right)\)
Do đó: ΔHBA~ΔHAC
=>\(\dfrac{HB}{HA}=\dfrac{HA}{HC}=\dfrac{BA}{AC}\)
=>\(\dfrac{2BP}{2AQ}=\dfrac{BA}{AC}\)
=>\(\dfrac{BP}{AQ}=\dfrac{BA}{AC}\)
Xét ΔABP và ΔCAQ có
\(\dfrac{AB}{CA}=\dfrac{BP}{AQ}\)
\(\widehat{ABP}=\widehat{CAQ}\left(=90^0-\widehat{ACB}\right)\)
Do đó: ΔABP~ΔCAQ
b: Xét ΔHAB có
Q,P lần lượt là trung điểm của HA,HB
=>QP là đường trung bình của ΔHAB
=>QP//AB
mà AB\(\perp\)AC
nên QP\(\perp\)AC
Xét ΔCAP có
PQ,AH là các đường cao
PQ cắt AH tại Q
Do đó: Q là trực tâm của ΔCAP
=>CQ\(\perp\)AP

\(A=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\\ =x^3-xy-x^3-x^2y+x^2y-xy\\ =-2xy\)
Thay `x=1/2;y=-100` vào A ta có:
\(A=-2\cdot\dfrac{1}{2}\cdot\left(-100\right)=100\)
\(B=\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\\=x^3+3x^2-5x-15-x^3+4x+x^2-4x^2\\ =\left(x^3-x^3\right)+\left(3x^2-4x^2+x^2\right)+\left(-5x+4x\right)-15\\ =-x-15\)

\(x\left(x-4\right)+5=x^2-4x+5\\ =x^2-4x+4+1\\ =x^2-2.2x+2^2+1\\ =\left(x-2\right)^2+1\)
Mà \(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1>0\)
\(\Leftrightarrow x\left(x-4\right)+5>0\forall x\)
Ta có:
\(x\left(x-4\right)+5\\ =x^2-4x+5\\ =\left(x^2-4x+4\right)+1\\ =\left(x-2\right)^2+1\)
Ta có: `(x-2)^2>=0` với mọi x
`=>(x-2)^2+1>=1>0` với mọi x
Hay `x(x-4)+5` luôn lớn hơn không

\(A=3x^2+8x+12\\ =3\left(x^2+\dfrac{8}{3}x+4\right)\\ =3\left[\left(x^2+2\cdot x\cdot\dfrac{4}{3}+\dfrac{16}{9}\right)+\dfrac{20}{9}\right]\\ =3\left(x+\dfrac{4}{3}\right)^2+\dfrac{20}{3}\)
Ta có: `3(x+4/3)^2>=0` với mọi x
`=>A=3(x+4/3)^2+20/3>=20/3` với mọi x
Dấu "=" xảy ra `x+4/3=0<=>x=-4/3`

\(M=x^2-4x+2y^2-4y+20\\ =\left(x^2-4x+4\right)+\left(2y^2-4y+2\right)+14\\ =\left(x^2-2\cdot x\cdot2+2^2\right)+2\left(y^2-2\cdot y\cdot1+1^2\right)+14\\ =\left(x-2\right)^2+2\left(y-1\right)^2+14\)
Ta có:
`(x-2)^2>=0` với mọi x
`2(y-1)^2>=0` với mọi y
`=>M=(x-2)^2+2(y-1)^2+14>=14` với mọi x,y
Dấu "=" xảy ra: `x-2=0` và `y-1=0`
`=>x=2` và `y=1`

\(B=5-x^2-8x\\ =\left(-x^2-8x-16\right)+21\\ =-\left(x^2+8x+16\right)+21\\ =-\left(x^2+2\cdot x\cdot4+4^2\right)+21\\ =-\left(x+4\right)^2+21\)
Ta có: `-(x+4)^2<=0` với mọi x
`=>B=-(x+4)^2+21<=21` với mọi x
Dấu "=" xảy ra: `x+4=0<=>x=-4`

\(\left(2x+1\right)\left(4x^2-2x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=8x^3+1-\left(8x^3-1\right)=8x^3+1-8x^3+1=2\)
\(\left(3x-5\right)^2-2x\left(4x-1\right)\)
\(=9x^2-30x+25-8x^2+2x\)
\(=x^2-28x+25\)
\(=x^2-28x+196-171\)
\(=\left(x-14\right)^2-171=\left(x-14-\sqrt{171}\right)\left(x-14+\sqrt{171}\right)\)