Rút gọn
B=\(\frac{x\sqrt{x}-1}{x+\sqrt{x}+1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}\)
pls help
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(D'\) là điểm liên hợp đẳng giác với \(A\) trong \(\Delta II_1I_2\), \(IB\) giao \(DE\) tại \(G\)
Ta có \(\widehat{BGD}=\widehat{CDE}-\widehat{DBG}=90^0-\widehat{\frac{1}{2}ACB}-\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{BAC}=\widehat{IAE}\)
Suy ra \(\left(A,F,I,E,G\right)_{cyc}\) hay \(\widehat{IGA}=90^0\)
Vì \(\widehat{D'I_1I_2}=\widehat{GI_1A}\) và \(\widehat{I_1D'I_2}=180^0-\widehat{II_1A}-\widehat{II_2A}=180^0-\left(\widehat{BIC}-\frac{1}{2}\widehat{BAC}\right)=90^0\)
nên \(\Delta I_1GA~\Delta I_1D'I_2\), dẫn đến \(\Delta I_1D'G~\Delta I_1I_2A\)
Suy ra \(\widehat{I_1GD'}=\widehat{I_1AI_2}=\widehat{IAE}=180^0-\widehat{IGE}\), do đó \(\overline{E,G,D'}\) hay \(D'\in DE\)
Tương tự ta có \(D'\in DF\). Từ đó \(D\equiv D'\), suy ra \(\widehat{I_1DI_2}=\widehat{I_1D'I_2}=90^0=\widehat{I_1PI_2}\)
Vậy \(\left(I_1,I_2,P,D\right)_{cyc}.\)
\(A=\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
\(A=\frac{3\sqrt{2}+\sqrt{10}}{2\sqrt{5}+\sqrt{6+2\sqrt{5}}}-\frac{3\sqrt{2}-\sqrt{10}}{2\sqrt{5}+\sqrt{6-2\sqrt{5}}}\)
\(A=\frac{3\sqrt{2}+\sqrt{10}}{2\sqrt{5}+\sqrt{\left(\sqrt{5}+1\right)^2}}-\frac{3\sqrt{2}-\sqrt{10}}{2\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(A=\frac{3\sqrt{2}+\sqrt{10}}{2\sqrt{5}+\sqrt{5}+1}-\frac{3\sqrt{2}-\sqrt{10}}{2\sqrt{5}+\sqrt{5}-1}\)
\(A=\frac{3\sqrt{2}+\sqrt{10}}{3\sqrt{5}+1}-\frac{3\sqrt{2}-\sqrt{10}}{3\sqrt{5}-1}\)
\(A=\frac{\left(3\sqrt{2}+\sqrt{10}\right)\left(3\sqrt{5}-1\right)-\left(3\sqrt{2}-\sqrt{10}\right)\left(3\sqrt{5}+1\right)}{\left(3\sqrt{5}\right)^2-1}\)
\(A=\frac{90+3\sqrt{50}-3\sqrt{2}-\sqrt{10}-90+3\sqrt{50}-3\sqrt{2}+\sqrt{10}}{44}\)
\(A=\frac{6\sqrt{50}-6\sqrt{2}}{44}=\frac{\sqrt{2}\left(6\sqrt{25}-6\right)}{44}=\frac{24\sqrt{2}}{44}=\frac{6\sqrt{2}}{11}\)
a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=25-9=16\Rightarrow AC=4\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9}{5}\)cm
-> CH = BC - BH = \(5-\frac{9}{5}=\frac{25-9}{5}=\frac{16}{5}\)cm
b, Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=CH.BH\Rightarrow BH=\frac{AH^2}{CH}=25\)cm
-> BC = BH + CH = \(25+144=169\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC=25.169=4225\Rightarrow AB=65\)cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=24336\Rightarrow AC=156\)cm
\(a,x-\sqrt{x-4\sqrt{x}+4}=8\)
\(x-\sqrt{\left(\sqrt{x}-2\right)^2}=8\)
\(x-\left|\sqrt{x}-2\right|=8\)
\(TH1:0\le x\le2\)
\(x-2+\sqrt{x}=8\)
\(x+\sqrt{x}-10=0\)
\(\sqrt{\Delta}=1-\left(4.-10\right)=\sqrt{41}\)
\(\orbr{\begin{cases}x_1=\frac{\sqrt{41}-1}{2}\left(KTM\right)\\x_2=\frac{-\sqrt{41}-1}{2}\left(KTM\right)\end{cases}}\)
\(TH2:x>2\)
\(x-\sqrt{x}+2=8\)
\(x-\sqrt{x}-6=0\)
\(\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)=0\)
\(\orbr{\begin{cases}\sqrt{x}+2=0\\\sqrt{x}-3=0\end{cases}\orbr{\begin{cases}\sqrt{x}=-2\left(KTM\right)\\x=9\left(TM\right)\end{cases}}}\)
\(b,\sqrt{\frac{1}{4}x^2+x+1}-\sqrt{6-2\sqrt{5}}=0\)
\(\sqrt{\left(\frac{1}{2}x+1\right)^2}-\sqrt{\sqrt{5}^2-2\sqrt{5}+1}=0\)
\(\left|\frac{1}{2}x+1\right|-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)
\(\left|\frac{1}{2}x+1\right|-\sqrt{5}+1=0\)
\(\left|\frac{1}{2}x+1\right|=\sqrt{5}-1\)
\(\orbr{\begin{cases}\frac{1}{2}x+1=\sqrt{5}-1\\\frac{1}{2}x+1=1-\sqrt{5}\end{cases}\orbr{\begin{cases}\frac{1}{2}x=\sqrt{5}-2\\\frac{1}{2}x=-\sqrt{5}\end{cases}\orbr{\begin{cases}x=2\sqrt{5}-4\\x=-2\sqrt{5}\end{cases}}}}\)
\(c,\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
\(\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}+1\right|=4\)
\(\sqrt{2x-5}+3+\sqrt{2x-5}+1=4\)
\(\sqrt{2x-5}=0\)
\(x=\frac{5}{2}\left(TM\right)\)
a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2=9+16=25\Rightarrow BC=5\)cm
*Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{12}{5}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9}{5}\)cm
-> CH = \(5-\frac{9}{5}=\frac{25-9}{5}=\frac{16}{5}\)cm
b, Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=BH.CH=9.16=144\Rightarrow AH=12\)cm
-> CH + BH = BC = 16 + 9 = 25
* Áp dụng hệ thức : \(AB^2=BH.BC=9.25=225\Rightarrow AB=15\)cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=400\Rightarrow AC=20\)cm
Đặt \(\overline{ab}=x;\overline{cd}=y\Rightarrow\overline{abcd}=100\overline{ab}+\overline{cd}\)
\(=100x+y\left(10\le x\le99;y\ge0\right)\)
\(\Rightarrow100x+y=\left(x+y\right)^2\)
\(=x^2+2xy+y^2\left(1\right)\)
\(\Rightarrow x^2+\left(2y-100\right)x+\left(y^2-y\right)=0\left(2\right)\)
Để \(x,y\inℤ\)thoản mãn (1) \(\Rightarrow\left(2\right)\)có nghiệm nguyên
\(\Rightarrow\Delta'=\left(y-50\right)^2-\left(y^2-y\right)\)
\(=y^2-100y+2500-y^2+y\)
\(=-99y+2500\)
\(\Rightarrow\Delta'\ge0\Leftrightarrow2500-99y\ge0\)
\(\Rightarrow y\le25\)
(1) có nghiệm nguyên khi \(\sqrt{\Delta'}\)là số nguyên
\(\Rightarrow y\in\left\{0;1;25\right\}\)
\(\cdot y=0\Rightarrow\sqrt{\Delta'}=50\Rightarrow\orbr{\begin{cases}x_1=\left(50-y\right)+\sqrt{\Delta'}=50+50=100\\x_2=\left(50-y\right)-\sqrt{\Delta'}=50-50=0\end{cases}\left(loại\right)}\)
tính tương tự với y=1 ; y =25 nha cậu
Ta có:
\(A=\left(1+tan^2x\right)cos^2x-\left(1+cot^2x\right)\left(cos^2x-1\right)\)
\(=\frac{1}{cos^2x}.cos^2x-\frac{1}{sin^2x}.sin^2x\)
\(=1-1=0\)
\(B=tan72^o-cot18^o+sin^230^o+sin^260^o\)
\(=tan72^o-tan72^o+sin^230^o+cos^230^o\)
\(=1\)
pls help I give bobux
Just kiding I have no bobux