K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 10 2024

a.

Do \(AC\perp BD\Rightarrow E\) là trung điểm BD

\(\Rightarrow OA\) là trung trực đoan BD \(\Rightarrow AB=AD\)

\(\widehat{DOA}=\widehat{COI}\) (đối đỉnh) \(\Rightarrow sđ\stackrel\frown{AD}=sđ\stackrel\frown{IC}\Rightarrow AD=IC\)

\(\Rightarrow AB=IC\)

b.

Do AC là đường kính nên \(\widehat{ABC}=\widehat{ADC}=90^0\) (nt chắn nửa đường tròn)

\(\Rightarrow\) Các tam giác ABC và ADC lần lượt vuông tại B và D

Áp dụng định lý Pitago:

\(\left(EA^2+EB^2\right)+\left(EC^2+ED^2\right)=AB^2+CD^2=AD^2+CD^2=AC^2=4R^2\)

c.

Áp dụng Pitago trong tam giác vuông OBE:

\(EB^2=OB^2-OE^2=R^2-\left(\dfrac{2R}{3}\right)^2=\dfrac{5R^2}{9}\Rightarrow BE=\dfrac{R\sqrt{5}}{3}\)

Trong tam giác vuông ABE:

\(AB^2=AE^2+EB^2=\left(R-\dfrac{2R}{3}\right)^2+\dfrac{5R^2}{9}=\dfrac{2R^2}{3}\)

\(\Rightarrow IC^2=AD^2=AB^2=\dfrac{2R^2}{3}\Rightarrow IC=AD=\dfrac{R\sqrt{6}}{3}\)

Trong tam giác vuông ADC:

\(DC=\sqrt{AC^2-AD^2}=\sqrt{\left(2R\right)^2-\dfrac{2R^2}{3}}=\dfrac{R\sqrt{30}}{3}\)

\(BD=2BE=\dfrac{2R\sqrt{5}}{3}\)

\(\Rightarrow IB=\sqrt{ID^2-BD^2}=\sqrt{\left(2R\right)^2-\left(\dfrac{2R\sqrt{5}}{3}\right)^2}=\dfrac{4R}{3}\)

ID là đường kính nên các tam giác IBD và ICD vuông tại B và D

\(S_{ABICD}=S_{\Delta ABD}+S_{\Delta IBD}+S_{\Delta ICD}\)

\(=\dfrac{1}{2}AE.BD+\dfrac{1}{2}IB.BD+\dfrac{1}{2}IC.DC=\dfrac{8R^2\sqrt{5}}{9}\)

23 tháng 10 2024

Help✋✊

24 tháng 10 2024

A = 21132000 - 21112000

A = (21134)500 - \(\overline{..1}\)

A = \(\overline{..1}\)500 - \(\overline{..1}\)

A = \(\overline{..0}\) ⋮ 2 va 5 (đpcm0

23 tháng 10 2024

\(3^x=81\cdot3^y\)

=>\(3^x=3^4\cdot3^y=3^{y+4}\)

=>x=y+4

\(2^x\cdot2^y=2^{16}\)

=>x+y=16

=>y+4+y=16

=>2y=12

=>y=6

x=y+4=6+4=10

2x+y=20+6=26

23 tháng 10 2024

Vì khoảng cách giữa n+10 và n+15 là 5 

và 5 là số lẻ

nên chắc chắn trong hai số n+10;n+15 sẽ có một số chẵn và một số lẻ

=>(n+10)(n+15) chia hết cho 2

23 tháng 10 2024

a: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

b: Xét ΔAHD có

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHD cân tại A

ΔAHD cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAD

Xét ΔAHE có

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAHE cân tại A

ΔAHE cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAE

\(\widehat{DAE}=\widehat{DAH}+\widehat{EAH}\)

\(=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)\)

\(=2\cdot90^0=180^0\)

=>D,A,E thẳng hàng

23 tháng 10 2024

\(sin^2x+cos^2x=1\)

=>\(cos^2x=1-\left(\dfrac{2}{3}\right)^2=1-\dfrac{4}{9}=\dfrac{5}{9}\)

mà \(cosx>0\)(Vì \(x\in\left(0;\dfrac{\Omega}{2}\right)\))

nên \(cosx=\sqrt{\dfrac{5}{9}}=\dfrac{\sqrt{5}}{3}\)

NV
23 tháng 10 2024

B là đáp án đúng, 14 hình

23 tháng 10 2024

Cô ơi cô có thể giải thích giúp em được không cô

NV
23 tháng 10 2024

Ta có:

\(36=36\times1=18\times2=12\times3=9\times4=6\times6\)

Vậy chu vi hình chữ nhật có thể có 5 giá trị khác nhau

NV
23 tháng 10 2024

1/2 của 1/3 của 1/4 của 81 768 là:

\(\dfrac{1}{2}\times\dfrac{1}{3}\times\dfrac{1}{4}\times81768=3407\)