Giải hệ phương trình: \(\hept{\begin{cases}\sqrt{x+y}\left(\sqrt{y}+1\right)=\sqrt{x^2+y^2}+2\\x\sqrt{y-1}+y\sqrt{x-1}=\frac{x^2+4y-4}{2}\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi BC tiếp xúc với (I), (I1), (I2) lần lượt tại D,M,N. AP cắt EF tại H và tiếp xúc với (I1),(I2) lần lượt tại Q,R.
Ta có \(EF=MN;EF=HE+HF=2HQ+QR;MN=PM+PN=2PR+RQ\)
Suy ra \(HE=PN\)
Lại có \(DN=PD+PN=CD-CP+PN=\frac{CA+BC-AB+CP+PA-CA-2CP}{2}\)
\(=\frac{BP+PA-AB}{2}=PM\) hay \(PN=DM\). Suy ra \(HE=DM\)
Mà tứ giác EFNM là hình thang cân nên \(HD||EM||FN\)
Nếu gọi DH cắt lại (I) tại K thì các tam giác cân \(EI_1M,KID,FI_2N\) đồng dạng có các cạnh tương ứng song song đôi một
Do đó \(II_1,DM,KE\) đồng quy tại B, \(II_2,DN,KF\) đồng quy tại C
Nói cách khác, BE và CF cắt nhau tại K. Vậy BE và CF gặp nhau trên (I).
Gọi số học sinh lúc đầu của nhóm đó là \(x\)(học sinh) \(x\inℕ^∗\).
Mỗi bạn lúc đầu trồng số cây là: \(\frac{120}{x}\)(cây)
Số học sinh lúc sau là: \(x+3\)(học sinh)
Mỗi bạn trồng số cây là: \(\frac{120}{x}-2\)(cây).
Ta có phương trình: \(\left(x+3\right)\left(\frac{120}{x}-2\right)=120\)
\(\Rightarrow120x+360-2x^2-6x=120x\)
\(\Leftrightarrow-2x^2-6x+360=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\left(tm\right)\\x=-15\left(l\right)\end{cases}}\)
-2x + 30y - 10 = 0
=> 30y - 2x = 10
=> 15y - x = 5
khó quá, bạn giải dược chưa