Phân tích đa thức thành nhân tử
\(x^3+x-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+7x+6\\ =\left(x^2+6x\right)+\left(x+6\right)\\ =x\left(x+6\right)+\left(x+6\right)\\ =\left(x+6\right)\left(x+1\right)\)
\(x^2\) + 7\(x\) + 6
= \(x^2\) + \(x\) + 6\(x\) + 6
= (\(x^2\) + \(x\)) + (6\(x\) + 6)
= \(x\)(\(x+1\)) + 6.(\(x\) + 1)
= (\(x\) + 1)(\(x\) + 6)
\(1\cdot2\cdot3\cdot4\cdot6⋮̸10\)
\(1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7⋮10\)
Do đó: \(1\cdot2\cdot3\cdot4\cdot6+1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7⋮̸10\)
B = 1.2.3.4.6
B là tích của các số chwaxn mà trong đó không có nào có tận cùng bằng 0 nên B không chia hết cho 10
A = 1.2.3.4.5.6.7
A = (2.5). 1.3.4.6.7 = 10.1.3.4.6.7 ⋮ 10
Vậy B + A không chia hết cho 10
AM=1/4MB
=>MB=4AM
AM+MB=AB
Do đó: 4AM+MA=8
=>5MA=8
=>\(MA=\dfrac{8}{5}=1,6\left(cm\right)\)
Bài 4.2:
\(a.\left(\dfrac{1}{4}\right)^3\cdot\left(\dfrac{1}{8}\right)^2\\ =\left[\left(\dfrac{1}{2}\right)^2\right]^3\cdot\left[\left(\dfrac{1}{2}\right)^3\right]^2\\ =\left(\dfrac{1}{2}\right)^6\cdot\left(\dfrac{1}{2}\right)^6\\ =\left(\dfrac{1}{2}\right)^{12}\\ b.25\cdot5^3\cdot\dfrac{1}{625}\cdot5^3\\ =5^2\cdot5^3\cdot\dfrac{1}{5^4}\cdot5^3\\ =5^8\cdot\dfrac{1}{5^4}\\ =5^4\\ c.4^2\cdot32:2^3\\ =\left(2^2\right)^2\cdot2^5:2^3\\ =2^4\cdot2^5:2^3\\ =2^{4+5-3}\\ =2^6\\ d.5^6\cdot\dfrac{1}{20}\cdot2^2\cdot3^3:125\\ =\left(\dfrac{1}{20}\cdot2^2\cdot5\right)\cdot5^5\cdot3^3:5^3\\ =5^2\cdot3^3\)
bài 4.3:
a: \(\dfrac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(2\cdot3-1\right)}=\dfrac{2}{3}\cdot\dfrac{6}{5}=\dfrac{12}{15}=\dfrac{4}{5}\)
b: \(\dfrac{9\cdot5^{20}\cdot27^9-3\cdot9^{15}\cdot25^9}{7\cdot3^{29}\cdot125^6-3\cdot3^9\cdot15^{19}}\)
\(=\dfrac{3^2\cdot5^{20}\cdot3^{27}-3\cdot3^{30}\cdot5^{18}}{7\cdot3^{29}\cdot5^{18}-3^{10}\cdot3^{19}\cdot5^{19}}\)
\(=\dfrac{3^{29}\cdot5^{18}\left(5^2-3^2\right)}{3^{29}\cdot5^{18}\left(7-5\right)}=\dfrac{16}{2}=8\)
\(a.A=x^2+5x+7\\ =\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\dfrac{3}{4}\\ =\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu "=" xảy ra: `x+5/2=0<=>x=-5/2`
\(b.B=6x-x^2-5\\ =-\left(x^2-6x+9\right)+4\\ =-\left(x-3\right)^2+4\le4\forall x\)
Dấu "=" xảy ra: `x-3=0<=>x=3`
\(a.25x^2-9=0\\ \Leftrightarrow\left(5x\right)^2-3^2=0\\ \Leftrightarrow\left(5x+3\right)\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x=3\\5x=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\\ b.\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\\ \Leftrightarrow x^2+8x+16-x^2+1=16\\ \Leftrightarrow8x+17=16\\ \Leftrightarrow8x=-1\\ \Leftrightarrow x=-\dfrac{1}{8}\\ c.\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\\ \Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\\ \Leftrightarrow5x^2+2x+10-5x^2+245=0\\ \Leftrightarrow2x+265=0\\ \Leftrightarrow2x=-265\\ \Leftrightarrow x=-\dfrac{265}{2}\)
\(a.A=9x^2+42x+49\\ =\left(3x\right)^2+2\cdot3x\cdot7+7^2\\ =\left(3x+7\right)^2\)
Thay x = 1 vào A ta có:
`A=(3*1+7)^2=10^2=100`
\(b.B=25x^2-2xy+\dfrac{1}{25}y^2\\ =\left(5x\right)^2-2\cdot5x\cdot\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\\ =\left(5x-\dfrac{1}{5}y\right)^2\)
Thay x = -1/5 và y = -5 vào B ta có:
\(B=\left(5\cdot\dfrac{-1}{5}-\dfrac{1}{5}\cdot-5\right)^2=\left(-1+1\right)^2=0\)
\(x^3+x-2\)
\(=x^3-x^2+x^2-x+2x-2\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+2\left(x-1\right)=\left(x-1\right)\left(x^2+x+2\right)\)