K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thi đánh giá năng lực

Thí nghiệm 1: Điều chế FeCl2.

- Tiến hành TN:

   + Cho đinh sắt đã đánh sạch vào ống nghiệm

   + Rót vào đó 3-4ml dd HCl

   + Đun nóng nhẹ, quan sát hiện tượng.

- Hiện tượng: Phản ứng xảy ra, bọt khí ra chậm, khi đun nóng bọt khí thoát ra nhanh hơn và dung dịch có màu lục nhạt.

Khi kết thúc phản ứng, màu của dung dịch chuyển sang màu vàng

Giải thích :

   + Fe phản ứng với HCl và phản ứng xảy ra nhanh hơn ở nhiệt độ cao. 1 thời gian sau một phần Fe2+ bị oxi hóa trong không khí → Fe3+ nên dung dịch chuyển từ màu xanh màu vàng

PTHH: Fe + 2HCl → FeCl2 + H2

2FeCl2 + O2 + 2HCl → 2FeCl3 + H2O

16 tháng 12 2021

Anh ơi khó quá

14 tháng 12 2021

\(123+234+345=702\)

\(23+32=55\)

HT

@@@@@@@@@@@@

14 tháng 12 2021

23+32=55

123+234+345=702

HT

13 tháng 12 2021

BÀ PHẢI CẮC RA

13 tháng 12 2021

chia đôi 3 quả ra đc 6 1/2 quả táo :v

13 tháng 12 2021

dễ thế mà

13 tháng 12 2021

A, B, C có bội số chung nhỏ nhất là 6

Giải thích các bước giải:

A= 1, B= 2, B=3

x= 8, y=5, z=3

Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6

A, B, C có bội số chung nhỏ nhất là 6.

13 tháng 12 2021

cho tui kết bạn  đi mà

13 tháng 12 2021

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

1. Phương pháp giải chung

Xét phương trình mũ: ax = b (1)

Dựa vào tính chất của hàm số, tập giá trị của hàm số y = ax là (0; +∞) nên ta chia thành 2 trường hợp như sau:

  • b > 0: Phương trình (1) có nghiệm duy nhất là x = loga b.
  • b ≤ 0: Phương trình (1) vô nghiệm.

Tuy nhiên phương pháp này thường chỉ ứng dụng cho các bài toán tổng quát hoặc cái bài toán đơn giản. Và thường là xuất hiện trong bước giải toán cuối cùng của một phương trình.

#2. Phương pháp đưa về cùng cơ số

Biến đối phương trình đã cho về dạng cùng cơ số. Khi đó ta cho các số mũ bằng nhau được một phương trình tương đương mới.

af(x) = ag(x) ⇔ f(x) = g(x), với 0 < a ≠ 1

Chú ý: Nếu cơ số a có chứa biến thì cần xét thêm trường hợp a = 1 (Vì 1f(x) = 1g(x) luôn đúng)

#3. Phương pháp đặt ẩn phụ

Thông thường, ta sẽ đặt t = ax, Điều kiện t > 0

Một số phương trình thường gặp và cách đặt:

+) m.a2f(x) + n.af(x) + p = 0 → Đặt t = af(x), (t > 0)

+) m.af(x) + n.bf(x) + p = 0, trong đó a․b = 1 → Đặt t = af(x), (t > 0), suy ra 

+) m.a2f(x) + n.(a․b)f(x) + p.b2f(x) = 0 → Chia hai vế cho b2f(x) và đặt 

Chú ý: Nếu đặt t = ax và x ∈ (m; n) thì

+) t ∈ (am; an) khi a >1.

+) t ∈ (an; am) khi 0 < a < 1.

#4. Phương pháp logarit hoá

Phương trình 

Phương trình af(x) = bg(x) (*), với a,b không đưa được về cùng cơ số nên không sử dụng được phương pháp số 2. Ta thực hiện bằng cách lấy logarit cơ số a cho hai về của phương trình (*).

Từ đó ta được phương trình tương đương như sau:

(*) ⇔ loga af(x) = loga bg(x) ⇔ f(x) = g(x)․loga b

Đây sẽ là một phương trình cơ bản hơn rất nhiều so với phương trình (*) theo đầu bài cho.

Cách giải phương trình logarit

Phương trình logarit cơ bản là phương trình có dạng sau:

loga x = b, (Trong đó điều kiện được cho: 0 < a ≠ 1).

Để giải phương trình này với nhiều biến thể khác nhau, VerbaLearn giới thiệu đến các bạn 4 phương pháp phổ biến sau. Thử lần lượt các phương pháp bạn sẽ có cách giải bài toán một cách hoàn hảo nhất.

#1. Phương pháp giải cơ bản

Xét lại phương trình logarit: loga x = b (*)

Theo như bài hàm số logarit, tập giá trị của hàm số y = loga x là ℝ. Do đó phương trình (*) có nghiệm duy nhất là:

x = ab.

Ở phương pháp cơ bản này, bạn cần chú ý một số công thức như sau để có thể giải toán nhanh hơn:

+) ln x = b ⇒ x = eb

+) log x = b ⇒ x = 10b

+) logaf(x) = b ⇔ f(x) = ab

#2. Phương pháp đưa về cùng cơ số

Biến đối phương trình đã cho về dạng:

Một lưu ý quan trọng trong phương pháp này. Khi gặp phương trình có từ 2 biểu thức logarit trở lên thì chúng ta cần đặt điều kiện để tồn tại các biểu thức chứa logarit trước khi giải. Nếu không đặt điều kiện sẽ sai bản chất hoặc thừa nghiệm và mất điểm đáng tiếc.

#3. Phương pháp đặt ẩn phụ

Ở các bài toán thường gặp, phép đặt phổ biến nhất là: t = loga x, Điều kiện t ∈ ℝ. Điều kiện này dựa vào tập giá trị của hàm số logarit.

Chú ý:

Để xác định miền của t. Nếu đặt t = loga x và x ∈ (m; n) thì:

+) t ∈ (loga m; loga n) khi a > 1

+) t ∈ (loga n; loga m) khi 0 < a < 1

Với 0 < x ≠ 1 ta có: . Do đó, nếu đặt t = loga x thì 

#4. Phương pháp mũ hoá

Ta có: 

Trường hợp phương trình logarit không thể xử lý được. Phương pháp cuối cùng là mũ hóa (có kèm theo điều kiện), sau đó vận dụng các kiến thức từ phương trình mũ để giải bài toán. Hướng đi này cần một tầm nhìn tốt để tránh làm bài toán trở nên phức tạp hơn.

13 tháng 12 2021

#1. Phương pháp giải chung

Xét phương trình mũ: ax = b (1)

Dựa vào tính chất của hàm số, tập giá trị của hàm số y = ax là (0; +∞) nên ta chia thành 2 trường hợp như sau:

  • b > 0: Phương trình (1) có nghiệm duy nhất là x = loga b.
  • b ≤ 0: Phương trình (1) vô nghiệm.

Tuy nhiên phương pháp này thường chỉ ứng dụng cho các bài toán tổng quát hoặc cái bài toán đơn giản. Và thường là xuất hiện trong bước giải toán cuối cùng của một phương trình.

#2. Phương pháp đưa về cùng cơ số

Biến đối phương trình đã cho về dạng cùng cơ số. Khi đó ta cho các số mũ bằng nhau được một phương trình tương đương mới.

af(x) = ag(x) ⇔ f(x) = g(x), với 0 < a ≠ 1

Chú ý: Nếu cơ số a có chứa biến thì cần xét thêm trường hợp a = 1 (Vì 1f(x) = 1g(x) luôn đúng)

#3. Phương pháp đặt ẩn phụ

Thông thường, ta sẽ đặt t = ax, Điều kiện t > 0

Một số phương trình thường gặp và cách đặt:

+) m.a2f(x) + n.af(x) + p = 0 → Đặt t = af(x), (t > 0)

+) m.af(x) + n.bf(x) + p = 0, trong đó a․b = 1 → Đặt t = af(x), (t > 0), suy ra 

+) m.a2f(x) + n.(a․b)f(x) + p.b2f(x) = 0 → Chia hai vế cho b2f(x) và đặt 

Chú ý: Nếu đặt t = ax và x ∈ (m; n) thì

+) t ∈ (am; an) khi a >1.

+) t ∈ (an; am) khi 0 < a < 1.

#4. Phương pháp logarit hoá

Phương trình 

Phương trình af(x) = bg(x) (*), với a,b không đưa được về cùng cơ số nên không sử dụng được phương pháp số 2. Ta thực hiện bằng cách lấy logarit cơ số a cho hai về của phương trình (*).

Từ đó ta được phương trình tương đương như sau:

(*) ⇔ loga af(x) = loga bg(x) ⇔ f(x) = g(x)․loga b

Đây sẽ là một phương trình cơ bản hơn rất nhiều so với phương trình (*) theo đầu bài cho.

Cách giải phương trình logarit

Phương trình logarit cơ bản là phương trình có dạng sau:

loga x = b, (Trong đó điều kiện được cho: 0 < a ≠ 1).

Để giải phương trình này với nhiều biến thể khác nhau, VerbaLearn giới thiệu đến các bạn 4 phương pháp phổ biến sau. Thử lần lượt các phương pháp bạn sẽ có cách giải bài toán một cách hoàn hảo nhất.

#1. Phương pháp giải cơ bản

Xét lại phương trình logarit: loga x = b (*)

Theo như bài hàm số logarit, tập giá trị của hàm số y = loga x là ℝ. Do đó phương trình (*) có nghiệm duy nhất là:

x = ab.

Ở phương pháp cơ bản này, bạn cần chú ý một số công thức như sau để có thể giải toán nhanh hơn:

+) ln x = b ⇒ x = eb

+) log x = b ⇒ x = 10b

+) logaf(x) = b ⇔ f(x) = ab

#2. Phương pháp đưa về cùng cơ số

Biến đối phương trình đã cho về dạng:

Một lưu ý quan trọng trong phương pháp này. Khi gặp phương trình có từ 2 biểu thức logarit trở lên thì chúng ta cần đặt điều kiện để tồn tại các biểu thức chứa logarit trước khi giải. Nếu không đặt điều kiện sẽ sai bản chất hoặc thừa nghiệm và mất điểm đáng tiếc.

#3. Phương pháp đặt ẩn phụ

Ở các bài toán thường gặp, phép đặt phổ biến nhất là: t = loga x, Điều kiện t ∈ ℝ. Điều kiện này dựa vào tập giá trị của hàm số logarit.

Chú ý:

Để xác định miền của t. Nếu đặt t = loga x và x ∈ (m; n) thì:

+) t ∈ (loga m; loga n) khi a > 1

+) t ∈ (loga n; loga m) khi 0 < a < 1

Với 0 < x ≠ 1 ta có: . Do đó, nếu đặt t = loga x thì 

#4. Phương pháp mũ hoá

Ta có: 

Trường hợp phương trình logarit không thể xử lý được. Phương pháp cuối cùng là mũ hóa (có kèm theo điều kiện), sau đó vận dụng các kiến thức từ phương trình mũ để giải bài toán. Hướng đi này cần một tầm nhìn tốt để tránh làm bài toán trở nên phức tạp hơn.

13 tháng 12 2021

cho em kết bạn nhá

⇔3x2−5x+4=34⇔x2−5x+4=4⇔x(x−5)=0⇔[x=0x=5

Các bất đẳng thức nổi tiếng

  • Bất đẳng thức Bunyakovsky.
  • Bất đẳng thức Azuma.
  • Bất đẳng thức Bernoulli.
  • Bất đẳng thức Boole.
  • Bất đẳng thức Cauchy-Schwarz.
  • Bất đẳng thức cộng Chebyshev.
  • Bất đẳng thức Chernoff.
  • Bất đẳng thức Cramer-Rao
  • :333
12 tháng 12 2021

Tôi đã học :

-bất đảng thức cô-si

-bất đảng thức bunyakovsky

về phần ví dụ thì tui chịu nha

Quên hết rùi

1+1=3 khi phép tính đó sai

HT

12 tháng 12 2021

1 + 1 = 3 <=> 2 = 3

GỈA SỬ TA CÓ: 14 + 6 – 20 = 21 + 9 – 30

ĐẶT 2 VÀ 3 THỪA SỐ CHUNG TA CÓ:

2 X ( 7 + 3 – 10 ) = 3 X ( 7 + 3 – 10 )

THEO TOÁN HỌC THÌ HAI TÍCH BẰNG NHAU VÀ CÓ THỪA SỐ THỨ HAI BẰNG NHAU THÌ THỪA SỐ THỨ NHẤT BẰNG NHAU.

NHƯ VẬY: 2 = 3