K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2022

I) Hình bạn tự vẽ nha 

Ta có DY//BH ; YH//DB 

=> DYHB hình bình hành => DY = HB 

Tương tự được ZE = FC

mà \(\frac{BH}{BC}=1-\frac{HC}{BC}=1-\frac{1}{\sqrt{2}}\)\(\left(\Delta HIC\approx\Delta BAC;\frac{AB}{IH}=\sqrt{2}\right)\)(1)

Tương tự được \(\frac{FC}{BC}=1-\frac{BF}{BC}=1-\frac{1}{\sqrt{2}}\)(2) 

Từ (1) ; (2) => BH = FC hay DY = ZE 

6 tháng 2 2022

TL :

\(\sqrt[3]{8+3\sqrt{21}}+\sqrt[3]{8-3\sqrt{21}}=\sqrt{8+3}+\sqrt{8-3}=5.\)

HT

6 tháng 2 2022

Đặt \(\hept{\begin{cases}a=8+3\sqrt{21}\\b=8-3\sqrt{21}\end{cases}}\), khi đó \(x=\sqrt[3]{8+3\sqrt{21}}+\sqrt[3]{8-3\sqrt{21}}=\sqrt[3]{a}+\sqrt[3]{b}\)

\(\Leftrightarrow x^3=\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^3=\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3+3\left(\sqrt[3]{a}\right)^2.\sqrt[3]{b}+3\sqrt[3]{a}.\left(\sqrt[3]{b}\right)^2\)

\(=a+b+3\sqrt[3]{a^2b}+3\sqrt[3]{ab^2}\)

Mà \(ab=\left(8+3\sqrt{21}\right)\left(8-3\sqrt{21}\right)=8^2-\left(3\sqrt{21}\right)^2=64-189=-125\)

\(\Rightarrow x^3=a+b+3\sqrt[3]{a.\left(-125\right)}+3\sqrt[3]{b.\left(-125\right)}=a+b+3.\left(-5\right)\sqrt[3]{a}+3.\left(-5\right)\sqrt[3]{b}\)

\(=a+b-15\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)\(=a+b-15x\)

Lại có \(a+b=8+3\sqrt{21}+8-3\sqrt{21}=16\)nên ta có \(x^3=16-15x\)\(\Leftrightarrow x^3+15x-16=0\)\(\Leftrightarrow x^3-x+16x-16=0\)\(\Leftrightarrow x\left(x^2-1\right)+16\left(x-1\right)=0\)\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+16\left(x-1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)+16\right]=0\)\(\Leftrightarrow\left(x-1\right)\left(x^2+x+16\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+x+16=0\left(\cdot\right)\end{cases}}\)

Vì \(x^2+x+16=\left(x^2+2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{63}{4}=\left(x+\frac{1}{2}\right)^2+\frac{63}{4}\ge\frac{63}{4}>0\)nên \(\left(\cdot\right)\)vô nghiệm.

Vậy \(x=1\)hay \(\sqrt[3]{8+3\sqrt{21}}+\sqrt[3]{8-3\sqrt{21}}=1\)

6 tháng 2 2022

Để \(\left(x^2-7x+11\right)^{x^2-13x+42}=1\)

TH1 : \(x^2-7x+11=1\Leftrightarrow\left(x-2\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)

TH2 : \(\hept{\begin{cases}x^2-7x+11\ne0\\x^2-13x+42=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-7x+11\ne0\\\left(x-6\right)\left(x-7\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=7\end{cases}}\)

TH3 : \(\hept{\begin{cases}x^2-7x+11=-1\\x^2-13x+42⋮2\\x^2-13x+42\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-3\right)\left(x-4\right)=0\\x^2-13x+42⋮2\\x^2-13x+42\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

=> PT có 6 nghiệm \(x\in\left\{2;3;4;5;6;7\right\}\)

6 tháng 2 2022

\(\hept{\begin{cases}x=5\\x=3,5\\x=2\end{cases}}\hept{\begin{cases}x=2\\x=4\\x=3\end{cases}}\)

Mình ko viết đc dấu hệ nhiều lần do lỗi latex , mình ghi đc kết quả thôi

6 tháng 2 2022

Gọi 3 độ dài kích thước hình hộp chữ nhật là a;b;h .

Gọi độ dài 1 cạnh hình lập phương là c 

=> Vhhcn = a.b.h

Vhlp = c3 ; mà a + b + h = c + c + c = 3c

Khi đó Vhlp = c3 = \(\left(\frac{a+b+h}{3}\right)^3\ge\left(\frac{3\sqrt[3]{abh}}{3}\right)^3=abh\)= Vhhcn 

=> ĐPCM ("=" khi a = b = h = c)

6 tháng 2 2022

a) Ta có \(V_{hhcn}=V_{hlp}\)

=> a.b.h = c3 

Lại có : a + b + h \(\ge3\sqrt[3]{abh}=3\sqrt[3]{c^3}=3c\)

=> a + b + h \(\ge3c\)

=> ĐPCM 

5 tháng 2 2022

bí  maatj

17 tháng 2 2022

2 3 4 x y

Áp dụng công thức tính diện tích và lập tỉ số ta có:

\(\hept{\begin{cases}\frac{x}{y+3}=\frac{2}{4}=\frac{1}{2}\\\frac{y}{x+2}=\frac{3}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-y=3\\3x-4y=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{18}{5}\\y=\frac{21}{5}\end{cases}}\)

Vậy phần diện tích cần tìm là \(x+y=\frac{18}{5}+\frac{21}{5}=\frac{39}{5}\)

4 tháng 2 2022

C/m tổng quát : \(A=\left(a+1\right)\left(a^2+1\right)\left(a^4+1\right)\left(a^8+1\right)...\left(a^{2^n}+1\right)=\frac{a^{2^{n+1}}-1}{a-1}\)

Có : \(A=\frac{\left(a+1\right)\left(a-1\right)}{a-1}.\frac{\left(a^2+1\right)\left(a^2-1\right)}{a^2-1}.\frac{\left(a^4+1\right)\left(a^4-1\right)}{a^4-1}...\frac{\left(a^{2^n}+1\right)\left(a^{2^n}-1\right)}{a^{2^n}-1}\)

\(=\frac{\left(a^2-1\right)\left(a^4-1\right)\left(a^8-1\right)...\left(a^{2^{n+1}}-1\right)}{\left(a-1\right)\left(a^2-1\right)\left(a^4-1\right)...\left(a^{2^n}-1\right)}=\frac{a^{2^{n+1}}-1}{a-1}\)(đpcm)

Với a = 2 ; n = 11 => \(A=2^{4096}-1\)

4 tháng 2 2022

A=2^4096-1 nha

HT

k cho mình nha

@@@@@@@@@@@@@@@@

5 tháng 2 2022

a. PTHH: \(Zn+H_2SO_4\rightarrow ZnSO_4+H_2\uparrow\)

Ban đầu:   0,1             0,2                                   mol

Trong pứng:  0,1       0,1               0,1             0,1     mol

Sau pứng:      0         0,1               01,             0,1     mol

b. \(n_{Zn}=\frac{m}{M}=\frac{6,5}{65}=0,1mol\)

\(100ml=0,1l\)

\(n_{H_2SO_4}=C_M.V=2.0,1=0,2mol\)

\(\rightarrow n_{H_2}=n_{Zn}=0,1mol\)

\(\rightarrow V_{H_2\left(ĐKTC\right)}=n.22,4=0,1.22,4=2,24l\)

c. \(V_{sau}=V_{H_2SO_4}=0,1l\)

\(\rightarrow C_{M_{H_2SO_4\left(dư\right)}}=\frac{n}{V_{sau}}=\frac{0,1}{0,1}=1M\)

Theo phương trình \(n_{ZnSO_4}=n_{Zn}=0,1mol\)

\(\rightarrow C_{M_{ZnSO_4}}=\frac{n}{V_{sau}}=\frac{0,1}{0,1}=1M\)

17 tháng 2 2022

x y 1 1 A B C D E M

Ta thấy \(\left[BCD\right]=\left[EDC\right]=1\Rightarrow d\left(B,CD\right)=d\left(E,CD\right)\Rightarrow BE||CD\)

Tương tự \(AB||CE,AE||BD\). Gọi giao điểm của \(BD,CE\) là \(M\) thì \(ABME\) là hình bình hành

Suy ra \(\left[BME\right]=\left[BAE\right]=1\)

Ta có \(x+y=\left[CDE\right]=1;\)\(\frac{x}{y}=\frac{MC}{ME}=\sqrt{\frac{x}{\left[BME\right]}}=\sqrt{x}\)

Giải hệ \(\hept{\begin{cases}x+y=1\\\frac{x}{y}=\sqrt{x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y\\x\left(\frac{x}{y^2}-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y\\\frac{1-y}{y^2}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-y\\y^2+y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3-\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\) (vì \(x,y>0\))

Vậy diện tích của ngũ giác đó là \(\left[ABCDE\right]=y+3=\frac{-1+\sqrt{5}}{2}+3=\frac{5+\sqrt{5}}{2}.\)