Cho hệ phương trình: (m-1)x + y = 2
mx + y = m+1
Chứng minh rằng với mọi m, hệ phương trình luôn có nghiệm duy nhất ( x; y) thỏa mãn x+ 2y bé hơn hoặc bằng 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là số tuổi của Nam hiện nay ( tuổi) (\(x\inℕ^∗\))
Gọi y là số tuổi của chị hiện nay ( tuổi) (\(y\inℕ^∗\))
Ta có: \(\frac{x}{y}=\frac{4}{5}\)
6 năm sau ta có: \(\frac{x+6}{y+6}=\frac{6}{7}\)
Ta có hpt:
\(\hept{\begin{cases}5x=4y\\\frac{x+6}{y+6}=\frac{6}{7}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{4y}{5}\\7x+42=36y+36\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{4y}{5}\\7\left(\frac{4y}{5}\right)+42=36y+36\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{4y}{5}\\2y=-30\end{cases}}\Leftrightarrow\hept{\begin{cases}x=12\\y=15\end{cases}}\)
Vậy Nam hiện nay 12 tuổi
Chị Nam hiện nay 15 tuổi
Gọi x,y là số tuổi của Nam và chị gái (ĐK: x,y>0)
theo đề bài, ta có hpt
[x/y=4/5 <=>5x-4y=0
[x+6/y+6=6/7 7x-6y=-6 vậy x=12
<=> y=15
vậy nam là 12 tuổi
chị nam là 15 tuổi
\(y+5x=7\)
\(\Rightarrow y=7-5x\)
Ta có: \(-2< x< 4\Rightarrow-10< 5x< 20\)
\(\Rightarrow7-20< 7-5x< 7+10\Rightarrow-13< y< 17\)
hpt \(\Leftrightarrow\hept{\begin{cases}mx-my=m^4+1\\my=-\left(m^2-2m\right)x+m^3-m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}my=mx-m^4-1\\y=-\left(m-2\right)x+m^2-m-\frac{2}{m}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=x-m^3-\frac{1}{m}\\y=-\left(m+2\right)x+m^2-m-\frac{2}{m}\end{cases}}\)
Để hpt vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}-\left(m-2\right)=0\\-m^3-\frac{1}{m}\ne m^2-m-\frac{2}{m}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}m=2\\-m^4-1\ne m^3-m^2-2\end{cases}}\Leftrightarrow m=2\)
Vậy với m=2 thì hpt vô nghiệm
\(0x-5y=-15\)
\(\Leftrightarrow-5y=-15\)
\(\Leftrightarrow y=3\)
Gọi thời gian dự định đi từ A đến B là x ( giờ) ( x>0)
=> quãng đường AB : 12x
1h20'=1/3=4/3h
Theo bài ra, ta có pt:
\(\frac{1}{3}.\frac{12x}{2}+\frac{20}{60}+\frac{2}{3}.\frac{12x}{36}=x-\frac{4}{3}\)
giải ra được \(x=\frac{15}{4}\) (giờ)
Vậy độ dài quãng đường AB : 12.\(\frac{15}{4}=45\left(km\right)\)
gọi vận tốc xe chậm và nhanh là x,y (km/h) với x,y>0
→độ dài AB:5x+5y=400
nếu xe chậm xuất phát trước 40p thì 2 xe gặp nhau sau 5h22p
→thời gian xe chậm đi là :5h22p=161/30h
Thời gian xe nhanh đi:5h22p -40p =4h42p =47/10h
→Độ dài AB :161/30x +47/10y=400
Theo bài ra ta có hệ: 5x+5y=400 và 161/30x +47/10y=400
→ x+y=80 và 161x+141y=12000
Vậy : x=36 ,y=44 (km/h)
Bài toán thiếu dữ kiện là điểm O. (Có khả năng O là tâm đường tròn ngoại tiếp tam giác ABC). Bạn xem lại đề bài có phải thế không?
a/ Nối B với O cắt đường tròng tại K ta có
\(\widehat{BCK}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow CK\perp BC\)
\(AH\perp BC\) (AH là đường cao của tg ABC)
=> AH//CK (cùng vuông góc với BC) (1)
Ta có
\(\widehat{BAK}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AK\perp AB\)
\(CH\perp AB\) (CH là đường cao của tg ABC)
=> AK//CH (cùng vuông góc với AB) (2)
Từ (1) và (2) => AKCH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một thì tứ giác đó là hbh)
=> AH=CK (Trong 1 hbh các cặp cạnh đối bàng nhau từng đôi một)
Xét \(\Delta BCK\) có
OB=OK; BM=CM => OM là đường trung bình của tg BCK \(\Rightarrow OM=\frac{1}{2}CK\) mà \(AH=CK\Rightarrow OM=\frac{1}{2}AH\left(dpcm\right)\)
b/
Do OM là đường trung bình của tg BCK nên OM//CK mà CK//AH => OM//AH
Gọi G' là giao của AM với HO. Xét tg AHG' và tg MOG' có
\(\widehat{HAG'}=\widehat{OMG'}\) (góc so le trong)
\(\widehat{AG'H}=\widehat{MG'O}\) (góc đối đỉnh)
=> tg AHG' đồng dạng với tg MOG' \(\Rightarrow\frac{MG'}{AG'}=\frac{OM}{AH}=\frac{1}{2}\)
G' thuộc trung tuyến AM của tg ABC => G' là trọng tâm của tg ABC => G' trùng G => H,G,O nằm trên 1 đường thẳng (dpcm)
Ta có
\(\hept{\begin{cases}x+y=3m-2\\x-2y=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=3m-2\\3y=3m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=3m-2\\y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2m-2\\y=m\end{cases}}\)
Vậy hpt có nghiệm \(\hept{\begin{cases}x=2m-2\\y=m\end{cases}}\) ( 1 )
Thay ( 1 ) vào x2 - 2y + 2 = 0 ta được
\(\left(2m-2\right)^2-2m+2=0\)
\(\Leftrightarrow\left(2m-2\right)\left(2m-2\right)-\left(2m-2\right)=0\)
\(\Leftrightarrow\left(2m-2\right)\left(2m-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2m-2=0\\2m-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{3}{2}\end{cases}}\)
Vậy ..................................