cho tam giác abc cân tại a trên tia đối tia cb lấy điểm e ,trên tia đối của tia bc lấy điểm f sao cho ce=bf
a) cm tam giác aef cân
b)kẻ bh vuông góc af ,ck vuông góc ae.cm BH=CK (2 cách
c)gọi o là giao điểm của cb và kc cm tam giác boc cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\dfrac{x^2-\left(x^2+4mx+1\right)}{x+\sqrt{x^2+4mx+1}}=\dfrac{-4mx-1}{x+\sqrt{x^2+4mx+1}}\)
\(=\dfrac{-4mx-1}{x+\left|x\right|\sqrt{1+\dfrac{4m}{x}+\dfrac{1}{x^2}}}\)
\(\lim\limits_{x\rightarrow\pm\infty}y\dfrac{-4m-\dfrac{1}{x}}{1\pm\sqrt{1+\dfrac{4m}{x}+\dfrac{1}{x^2}}}=-4m\)
Để y = 1 là TCN => -4m = 1 => m = -1/4
\(\dfrac{x}{2}+\dfrac{x}{3}-1=\dfrac{1}{6}\Rightarrow3x+2x-6=1\Leftrightarrow5x=7\Leftrightarrow x=\dfrac{7}{5}\)
1 The girl often listens to pop music
The girl doesn't often listen to pop music
Does the girl listen to pop music?
2 I am from the capital of Vietnam, Ha Noi
I am not from the capital of Vietnam, Ha Noi
Are you from the capital of Vietnam, Ha Noi?
3 My father keeps the greenhouse warm at night
My father doesn't keep the greenhouse warm at night?
4 Danny remembers to phone his father on Sunday
Danny doesn't remember to phone his father on Sunday
Does Danny remember to phone his father on Sunday?
5 They do their homework after school
They don't do their homework after school
Do they do their homework after school?
1. (+) The girl often listens to pop music
(-) __The girl doesn't often listen to pop music__
(?) __Does the girl often listen to pop music?___
2 . (+) I am from the capital of Vietnam , Hanoi
(-) __ I am not from the capital of Vietnam , Hanoi___
(?) ___Are you from the capital of Vietnam , Hanoi?___
3 . (+) ____My father keeps the greenhouse warm at night___
(-) My father doesn't keep the greenhouse warm at night
(?) ___Does my father keep the greenhouse warm at night?___
4 . (+) ___Danny remembers to phone his father on sunday___
(-) ___Danny doesn't remember to phone his father on sunday___
(?) Does Danny remember to phone his father on sunday ?
5 . (+) __They do their homework after school__
(-) They don't do their homework after school
(?) __Do they do their homework after school? ___
\(N=-1-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)
Xét \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)
\(\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{11}}\Rightarrow\dfrac{1}{2}A-A=\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{11}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)
\(\Leftrightarrow-\dfrac{1}{2}A=-\dfrac{1}{2}+\dfrac{1}{2^{11}}\Rightarrow A=-\dfrac{1}{2^{10}}\)
\(\Rightarrow N=-1-\left(-\dfrac{1}{2^{10}}\right)=-1+\dfrac{1}{2^{10}}\)
=> Vậy ko tm đpcm
Cửa hàng có số viên bi là:
`2416` x `5 = 12080` (viên bi)
Mỗi túi có số viên bi là:
`12080 : 4 = 3020` (viên bi)
Đáp số: `3020` viên bi
a: Xét (O) có
ΔCMD nội tiếp
CD là đường kính
Do đó:ΔCMD vuông tại M
=>DM\(\perp\)CF tại M
b: Xét (O) có AB,CD là các đường kính và AB\(\perp\)CD tại O
nên \(sđ\stackrel\frown{CA}=sđ\stackrel\frown{CB}=sđ\stackrel\frown{AD}=sđ\stackrel\frown{BD}\)
Xét (O) có \(\widehat{MNB}\) là góc có đỉnh ở bên trong đường tròn chắn hai cung MB,AD
=>\(\widehat{MNB}=\dfrac{1}{2}\left(sđ\stackrel\frown{MB}+sđ\stackrel\frown{AD}\right)=\dfrac{1}{2}\left(sđ\stackrel\frown{MB}+sđ\stackrel\frown{BD}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{MD}\)
Xét (O) có
\(\widehat{DME}\) là góc tạo bởi tiếp tuyến ME và dây cung MD
=>\(\widehat{DME}=\dfrac{1}{2}\cdot sđ\stackrel\frown{MD}\)
=>\(\widehat{DME}=\widehat{MNB}\)
=>ΔENM cân tại E
Ta có: \(\widehat{EMN}+\widehat{EMF}=\widehat{FMN}=90^0\)
\(\widehat{ENM}+\widehat{EFM}=90^0\)(ΔNMF vuông tại M)
mà \(\widehat{ENM}=\widehat{EMN}\)
nên \(\widehat{EMF}=\widehat{EFM}\)
=>ΔEFM cân tại E
`556^2 - 553 . 559 `
`= 556^2 - (556 - 3) . (556 + 3) `
`= 556^2 - (556^2 - 3^2)`
`= 556^2 - 556^2 + 9`
`= 0 + 9`
= 9
`456^2 + 456 . 88 + 44^2`
`= 456^2 + 456 . 88 + 44^2`
`= 456^2 + 2 .456 . 4 + 44^2`
`= (456 + 44)^2`
`= 500^2`
`= 250000`
--------------------------------
Áp dụng các HDT sau nhé:
`(a+b)^2 = a^2 + 2ab + b^2`
`a^2 - b^2 = (a+b)(a-b)`
A là trung điểm của OB
=>OA=AB
=>OA=5,5(cm)
A là trung điểm của OB
=>\(OB=2\cdot AB=2\cdot5,5=11\left(cm\right)\)
Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}\)
=>\(\dfrac{AC}{AB}=\sqrt{3}\)
=>\(\dfrac{AC^2}{AB^2}=3\)
=>\(AC^3=3AB^2\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(4\cdot AB^2=2^2=4\)
=>\(AB^2=1\)
=>AB=1(cm)
=>\(AC=1\cdot\sqrt{3}=\sqrt{3}\left(cm\right)\)
a) Do ∆ABC cân tại A (gt)
⇒ AB = AC và ∠ABC = ∠ACB
Ta có:
∠ABF + ∠ABC = 180⁰ (kề bù)
∠ACE + ∠ACB = 180⁰ (kề bù)
Mà ∠ABC = ∠ACB (cmt)
⇒ ∠ABF = ∠ACE
Xét ∆ABF và ∆ACE có:
AB = AC (cmt)
∠ABE = ∠ACF (cmt)
BF = CE (gt)
⇒ ∆ABF = ∆ACE (c-g-c)
⇒ AF = AE (hai cạnh tương ứng)
⇒ ∆AEF cân tại A
b) *) Cách 1:
Do ∆ABF = ∆ACE (cmt)
⇒ ∠BAF = ∠CAE (hai góc tương ứng)
⇒ ∠BAH = ∠CAK
Xét hai tam giác vuông: ∆ABH và ∆ACK có:
AB = AC (cmt)
∠BAH = ∠CAK (cmt)
⇒ ∆ABH = ∆ACK (cạnh huyền - góc nhọn)
⇒ BH = CK (hai cạnh tương ứng)
*) Cách 2:
Do ∆AEF cân tại A (cmt)
⇒ ∠AFE = ∠AEF
⇒ ∠HFB = ∠KEC
Xét hai tam giác vuông: ∆BHF và ∆CKE có:
BF = CE (gt)
∠HFB = ∠KEC (cmt)
⇒ ∆BHF = ∆CKE (cạnh huyền - góc nhọn)
⇒ BH = CK (hai cạnh tương ứng)
c) Sửa đề: Gọi O là giao điểm của HB và KC
Do ∆BHF = ∆CKE (cmt)
⇒ ∠HBF = ∠KCE (hai góc tương ứng)
Mà ∠CBO = ∠HBF (đối đỉnh)
∠BCO = ∠KCE (đối đỉnh)
⇒ ∠CBO = ∠BCO
⇒ ∆BOC cân tại O