OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Mini game 20/11 tri ân thầy cô, nhận thưởng hấp dẫn - Tham gia ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a;b;c > 0 thỏa mãn \(a+b+c=3\)
Tìm Max \(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
giá hàng tháng 2 hơn giá hàng tháng 1 20%. giá hàng tháng 3 giảm 20% so với giá hàng tháng 1 . hỏi giá hàng tháng 1 tăng hoặc giảm bao nhiêu phần trăm so với giá hàng tháng 3 (nâng cao)
Cho các số , x, y thỏa mãn \(x^2+y^2=1+xy\). Tích của giá trị lớn nhất và giá trị nhỏ nhất của biểu thức\(P=x^4+y^4-x^2y^2\)
gg
tìm số nguyên x,y sao cho
2x2+3xy-2y2=7
tìm giá trị nhỏ nhất của biểu thức
A= \(x^2 + y^2 - 6x + 12xy - 4y +12\)
Với a, b, c là các số thực dương thỏa mãn \(a^2+b^2+c^2=3\). Chứng minh rằng:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}+\frac{a+b+c}{6}\ge2\) (Michael Rozenberg)
Cho tam giác ABCcó G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho \(\overrightarrow{BH}=\frac{1}{3}\overrightarrow{HC}\). Điểm M di động nằm trên BC sao cho \(\overrightarrow{BM}=x\overrightarrow{BC}\). Tìm x sao cho độdài của vector \(\overrightarrow{MA}+\overrightarrow{GC}\) đạt giá trị nhỏ nhất.
Tìm các số có 3 chữ số abc(có gạch trên đầu) thoả mãn điều kiện :
1, a=b+c
2, b(c+1)=52-4a
Cho tam giác ABC có 3 góc nhọn các đường cao AA1 ; BB1 ; CC1 cắt nhau tại H. Cmr A1H/AA1+B1H/BB1+C1H/CC1=1
Giải các phương trình :
a) \(x=\sqrt{40-x}.\sqrt{45-x}+\sqrt{45-x}.\sqrt{72-x}+\sqrt{72-x}.\sqrt{40-x}\)
b) \(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)