a/ chứng minh rằng nếu tổng cảu hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
b/ tìm các giá trị của x để biểu thức: P=(x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong tứ giác pqrs có:
x+x+s+r=3600
=> 2x+650+950=3600
=> 2x=3600-950-650
=> 2x=2000
=> x=2000:2
=> x=1000
Bạn tham khảo bài này nhé :
a) Tam giác ADC = tam giác CBA
=> Góc ACB = Góc CAD
=> tam giác AED = tam giác CFB
=>Góc BFC = Góc DEA
=> DN // BM ( vì BFC và DEA ở vị trí so le ngoài)
=> EN // BM ( E thuộc DN)
Tam giác AMB có EA = EF (gt) ; EN // BM (c/m trên)
=> EN là đường trung bình
=> N là trung điểm của AB
Tương tự => FM là đường trung bình tam giác ECD
=> M là trung điểm của CD
\(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
a) 6x2 - 11x + 3 = 6x2 - 2x - 9x + 3 = 2x(3x - 1) - 3(3x - 1) = (3x - 1)(2x - 3)
b) 2x2 + 3x - 27 = 2x2 - 6x + 9x - 27 = 2x(x - 3) + 9(x - 3) = (x - 3)(2x + 9)
c) 2x2 - 5xy - 3y2 = 2x2 + xy - 6xy - 3y2 = x(2x + y) - 3y(2x + y) = (2x + y)(x - 3y)
6x2-11x+3
<=> 6x2 - 2x -9x +3
<=> 2x( 3x -1) - 3(3x-1)
<=> (3x-1)(2x-3)
\(x^3+y^3+z^3-3xyz=x^3+3x^2y+3xy^2+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
vậy bài này lắmnhư vậy à
mình cũng
có bài tương
tự nhưng mãy
ko giải được
Gọi số có dạng 5k + 4
Ta có: (5k + 4)2 = 25k2 + 16 = 5 x 5 x (k2 + 3) + 1
Vậy chia 5 dư 1
tự biên tự diễn thôi:
a/ gọi 2 số phải tìm là a và b, ta có a+b chia hết cho 3
ta có a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+2ab+b^2)-3ab]= (a+b)[(a+b)^2-3ab]0,5
vì a+b chia hết cho 3 nên (a+b)^2-3ab chia hết cho 3
do vậy (a+b)[(a+b)^2-3ab] chia hết cho 3
ai làm câu b