Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán này tương đương với: tìm số dư khi chia \(F_{24}=2^{2^{24}}+1chia10^5\)
Ta có nhận xét:
1) \(2^{2^{n+1}}=2^{2^n}\times2^{2^n}\)
2) \(2^{2^n}\equiv a\left(mod10^5\right)\Rightarrow2^{2^{n+1}}\equiv a^2\left(mod10^5\right)\)
Từ đây ta có thể tính đồng dư của \(2^{2^n}theo\left(mod10^5\right)\) như sau (tính máy tính)
\(2^{2^1}\equiv4\) , \(2^{2^2}\equiv16\) , , \(2^{2^3}\equiv256\)
\(2^{2^4}\equiv65536\) , ....... , \(2^{2^{24}}\equiv97536\)
Vậy \(F_{24}=2^{2^{24}}+1=97536+1\). Năm chữ số cuối cùng \(F_{24}=2^{2^{24}}+1\) là 97537
(CHÚ THÍCH : mod là phép chia lấy phần dư ví dụ Cho hai số dương, (số bị chia) a và (số chia) n, a modulo n (viết tắt là a mod n) là số dư của phép chia có dư Euclid của a cho n. Ví dụ, biểu thức "5 mod 2" bằng 1 vì 5 chia cho 2 có thương số là 2 là số dư là 1, ta có thể viết 5\(\equiv\)1mod2 )
CHO CHỊ XIN 1TÍCH NHA :))
Bài toán này tương đương với: tìm số dư khi chia
Ta có nhận xét:
1)
2)
Từ đây ta có thể tính đồng dư của như sau (tính máy tính)
, , ,
, ....... ,
Vậy . Năm chữ số cuối cùng là 97537
(CHÚ THÍCH : mod là phép chia lấy phần dư ví dụ Cho hai số dương, (số bị chia) a và (số chia) n, a modulo n (viết tắt là a mod n) là số dư của phép chia có dư Euclid của a cho n. Ví dụ, biểu thức "5 mod 2" bằng 1 vì 5 chia cho 2 có thương số là 2 là số dư là 1, ta có thể viết 51mod2 )
CHO CHỊ XIN 1TÍCH NHA :))
Em sẽ sử dụng máy tính casio và nhập biểu thức sau:
$(2^{24}+1)$ : R$10^5$, ta sẽ được kết quả $167$,R = $77217$ nên năm chữ số tận cùng bên phải là $77217$.
Để bấm được ": R", con bấm tổ hợp phím này nhé.
Em muốn hỏi bài nào vậy?
dạ bài 3 ạ