THực hiện phép tính:
\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, \(27a^2b^2-18ab+3=3\left(9a^2b^2-6ab+1\right)=3\left(3ab-1\right)^2\)
b, \(x^2+2xy+y^2-xz-yz\)
\(=\left(x^2+2xy+y^2\right)-z\left(x+y\right)\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
c, \(a^4+a^3-a^2-a\)
\(=\left(a^4+a^3\right)-\left(a^2+a\right)\)
\(=a^3\left(a+1\right)-a\left(a+1\right)\)
\(=a\left(a+1\right)\left(a^2-1\right)\)
\(=a\left(a+1\right)\left(a-1\right)\left(a+1\right)\)
\(=a\left(a+1\right)^2\left(a-1\right)\)
d, \(a^3-b^3+2b-2a\)
\(=\left(a^3-b^3\right)-\left(2a-2b\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)-2\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2-2\right)\)
a) 4x2 + 4xy + y2
= (2x + y)2
b) (2x + 1)2 - (x - 1)2
= (2x + 1 + x - 1)(2x + 1 - x + 1)
= 3x(x + 2)
c) 9 - 6x + x2 - y2
= (x2 - 6x + 9) - y2
= (x - 3)2 - y2
= (x - y - 3)(x + y - 3)
d) (-x - 2) + 3(x2 - 4)
= -(x + 2) + 3(x - 2)(x + 2)
= (x + 2)(3x - 7)
e) 5x2- 10xy2 + 5y4
= 5(x2 - 2xy2 + y4)
= 5(x - y2)2
f) \(\frac{x^4}{2}-2x^2=\frac{x^4-4x^2}{2}=\frac{x^2\left(x^2-4\right)}{2}=\frac{x^2\left(x-2\right)\left(x+2\right)}{2}\)
g) 49(x - 4)2 - 9(x + 2)2
= (7x - 28)2 - (3x + 6)2
= (10x - 22)(4x - 34)
h) (x2 + y2 - 5)2 - 2(xy + 2)2
= \(\left(x^2+y^2-5\right)^2-\left(\sqrt{2}xy+2\sqrt{2}\right)^2\)
\(=\left(x^2+y^2+2\sqrt{xy}+2\sqrt{2}-5\right)\left(x^2+y^2-\sqrt{2}xy-2\sqrt{2}-5\right)\)
a, \(\left(y-2\right)\left(y+2\right)\left(y^2+4\right)-\left(y+3\right)\left(y-3\right)\left(y^2+9\right)\)
\(=\left(y^2-4\right)\left(y^2+4\right)-\left(y^2-9\right)\left(y^2+9\right)\)
\(=y^4-16-y^4+81=65\)
b, \(2\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)-2\left(x^6-y^6\right)\)
\(=2\left(x^3-y^3\right)\left(x^3+y^3\right)-2\left(x^6-y^6\right)\)
\(=2\left(x^6-y^6\right)-2\left(x^6-y^6\right)=0\)
1) a) 2a + 2b = 2(a + b) ;
b) 9a - 9b = 9(a - b) ;
c) 3a - 6b - 9c = 3(a - 2b - 3c)
d) ab - ac = a(b - c)
e) 5a - 10ax - 15a = -10a - 10ax = 10a(x + 1)
f) 3a(ax - 2ay + 4)
g) 5a2(x - y) + 10a(x - y)
= 5a(x - y)(a + 2)
2) ax + ay + bx + by
= a(x + y) + b(x + y)
= (a + b)(x + y)
b) a2 - 49 = (a - 7)(a + 7)
c) 9a2 - 1 = (3a - 1)(3a + 1)
d) \(\frac{1}{4}a^2-b^2=\left(\frac{1}{2}a-b\right)\left(\frac{1}{2}a+b\right)\)
e) x2 + 14x + 49 = (x + 7)2
f) 4x2 + 20x + 25 = (2x + 5)2
g) 4x4 + 20x2 + 25 = (2x2 + 5)2
h) 2x3 + 8x2 + 8x = 2x(x2 + 4x + 4) = 2x(x + 2)2
i) 2x3 + 16 = 2(x3 + 8) = 2(x + 2)(x2 - 2x + 4)
3) x2 + 4x + 3 = x2 + x + 3x + 3 = x(x + 1) + 3(x + 1) = (x + 1)(x + 3)
x2 + 7x + 10 = x2 + 2x + 5x + 10 = x(x + 2) + 5(x + 2) = (x + 2)(x + 5)
ta có 2(x^2+x+1)/x^2+1
=2x^2+2x+2/x^2+1
=1+(x+1)^2/x^2+1>=1 với mọi x
dấu bằng xảy ra khi x=-1
bạn tự kết luận nha
Trả lời:
\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\) \(\left(ĐK:a\ne b\ne c\right)\)
\(=\frac{1}{\left(a-b\right)\left(a-c\right)}-\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{b-c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{a-c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{b-c-a+c+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{0}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)