chứng minh rằng : \(A=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}+\dfrac{1}{256}+\dfrac{1}{324}< 1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chiều cao hình hộp chữ nhật là:
\(1053:18:9=6,5\) ( dm )
Đ/S:...
Bài 2:
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp
Xét tứ giác DHEC có \(\widehat{HDC}+\widehat{HEC}=90^0+90^0=180^0\)
nên DHEC là tứ giác nội tiếp
Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
Xét tứ giác AFDC có \(\widehat{AFC}=\widehat{ADC}=90^0\)
nên AFDC là tứ giác nội tiếp
b: Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF nội tiếp)
\(\widehat{DEH}=\widehat{DCH}\)(DCEH nội tiếp)
mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABD}\right)\)
nên \(\widehat{FEH}=\widehat{DEH}\)
=>EH là phân giác của góc FED
c: Xét (O) có
ΔABK nội tiếp
AK là đường kính
Do đó: ΔABK vuông tại B
=>BK\(\perp\)AB
mà CH\(\perp\)AB
nên CH//BK
Xét (O) có
ΔACK nội tiếp
AK là đường kính
Do đó: ΔACK vuông tại C
=>AC\(\perp\)CK
mà BH\(\perp\)AC
nên BH//CK
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
=>HK cắt BC tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HK
=>H,I,K thẳng hàng
Bài 3:
a: ΔOMN cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)MN
Xét tứ giác OIAC có \(\widehat{OIA}+\widehat{OCA}=90^0+90^0=180^0\)
nên OIAC là tứ giác nội tiếp
=>O,I,A,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOIA vuông tại I và ΔOHD vuông tại H có
\(\widehat{IOA}\) chung
Do đó: ΔOIA~ΔOHD
=>\(\dfrac{OI}{OH}=\dfrac{OA}{OD}\)
=>\(OI\cdot OD=OA\cdot OH\)(3)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\left(4\right)\)
Từ (3),(4) suy ra \(OI\cdot OD=R^2\)
Giải:
1 xe chở được số gạo là:
56 : 8 = 7( bao gạo )
1400 bao gạo thì cần số xe là:
1400 : 7 = 200 ( xe)
Đáp số: ....
1. \(0.035 \, \text{m}^3\)
2. \(15.0025 \, \text{ha}\)
3. \(5.75 \, \text{phút}\)
4. \(6 \, \text{giờ} \, 5 \, \text{phút}\)
Tham khảo:
a. Để chứng minh tứ giác \(ADHE\) nội tiếp, ta cần chứng minh rằng góc \(DHE\) bằng \(180^\circ\) - tức là góc \(DHE\) là góc ngoài của tam giác \(ABC\) tại đỉnh \(A\), vì khi đó tứ giác \(ADHE\) sẽ nội tiếp.
Xét góc \(DHE\), ta thấy rằng:
\[ \angle DHE = \angle B + \angle C \]
Do \(BD\) và \(CE\) là đường cao của tam giác \(ABC\), nên:
\[ \angle B = \angle EHB \]
\[ \angle C = \angle HDC \]
Vậy:
\[ \angle DHE = \angle EHB + \angle HDC \]
\[ \angle DHE = (180^\circ - \angle B) + (180^\circ - \angle C) \]
\[ \angle DHE = 360^\circ - (\angle B + \angle C) \]
Nhưng ta biết rằng tổng các góc của tam giác \(ABC\) là \(180^\circ\), nên:
\[ \angle DHE = 360^\circ - 180^\circ = 180^\circ \]
Điều này chứng minh tứ giác \(ADHE\) là tứ giác nội tiếp.
b. Để chứng minh \( \angle DEK = \angle DMC \), ta sử dụng tính chất của tứ giác \(ADHE\) nội tiếp đã chứng minh ở câu (a).
Do tứ giác \(ADHE\) là tứ giác nội tiếp, nên:
\[ \angle DHE = 180^\circ - \angle DAE \]
Nhưng ta cũng biết rằng:
\[ \angle DAE = \angle DMC \]
Vậy:
\[ \angle DHE = 180^\circ - \angle DMC \]
\[ \angle DHE + \angle DMC = 180^\circ \]
Giả sử \(HN\) vuông góc với \(AB\) tại \(N\), với \(M\) là trung điểm của \(BC\), thì \(HM\) cũng là đường trung bình của tam giác \(ABC\), nên:
\[ \angle HMC = \angle HNC = 90^\circ \]
Vậy, chúng ta có:
\[ \angle DHE + \angle DMC = 180^\circ = \angle HMC + \angle HNC \]
Vậy, điều phải chứng minh là góc \(DEK\) bằng góc \(DMC\).
a: Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
nên ADHE là tứ giác nội tiếp
b: Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔBAC
=>AH\(\perp\)BC tại K
Xét tứ giác BEHK có \(\widehat{BEH}+\widehat{BKH}=90^0+90^0=180^0\)
nên BEHK là tứ giác nội tiếp
Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
Ta có: \(\widehat{DEH}=\widehat{DAH}\)(AEHD nội tiếp)
\(\widehat{KEH}=\widehat{KBH}\)(BEHK nội tiếp)
mà \(\widehat{DAH}=\widehat{KBH}\left(=90^0-\widehat{DCB}\right)\)
nên \(\widehat{DEH}=\widehat{KEH}\)
=>EC là phân giác của góc DEK
=>\(\widehat{DEK}=2\cdot\widehat{HED}\)
mà \(\widehat{HED}=\widehat{HBC}\)(BEDC nội tiếp)
nên \(\widehat{DEK}=\widehat{HBC}\)(1)
ΔDBC vuông tại D
mà DM là đường trung tuyến
nên DM=MB=MC
Xét ΔMDB có \(\widehat{DMC}\) là góc ngoài tại D
nên \(\widehat{DMC}=\widehat{MBD}+\widehat{MDB}=2\cdot\widehat{MBD}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{DEK}=\widehat{DMC}\)
\(x\) + \(x\) + \(x\) - 2 = 6
\(x\) \(\times\) 1 + \(x\times\) 1 + \(x\) \(\times\) 1 - 2 = 6
\(\left(x\times1+x\times1+x\times1\right)\) - 2 = 6
\(x\) \(\times\)( 1 + 1 + 1) - 2 = 6
\(x\times\) 3 - 2 = 6
\(x\) \(\times\) 3 = 6 + 2
\(x\times\) 3 = 8
\(x\) = 8 : 3
\(x=\dfrac{8}{3}\)
Bài 1
Giải:
a; Vận tốc của xe máy là: 45 x \(\dfrac{2}{3}\) = 30 (km/h)
Thời gian hai xe gặp nhau là: 187,5 : (45 + 30) = 2,5 (giờ)
2,5 giờ = 2 giờ 30 phút
b; Chỗ gặp nhau cách A là : 45 x 2,5 = 112,5 (km)
Đáp số: a; 2 giờ 30 phút
b; 112,5 km
Bài 2:
Giải
Chiều cao của hình hộp chữ nhật là: 1053 : (18 x 9) = 6,5 (dm)
Đáp số: 6,5dm
\(A=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{256}+\dfrac{1}{324}\)
\(A=\dfrac{1}{2\times2}+\dfrac{1}{4\times4}+\dfrac{1}{6\times6}+....+\dfrac{1}{16\times16}+\dfrac{1}{18\times18}\)
\(2A=\dfrac{2}{2\times2}+\dfrac{2}{4\times4}+\dfrac{2}{6\times6}+....+\dfrac{2}{16\times16}+\dfrac{2}{18\times18}\)
\(2A< \dfrac{1}{2}+\dfrac{2}{2\times4}+\dfrac{2}{4\times6}+\dfrac{2}{6\times8}+....+\dfrac{2}{14\times16}+\dfrac{2}{16\times18}\)
\(2A< \dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+....+\dfrac{1}{14}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{18}\)
\(2A< 1-\dfrac{1}{18}< 1\)
\(A< \dfrac{1}{2}< 1\)