Bài 35 (trang 20 SGK Toán 9 Tập 1)
Tìm $x$, biết:
a) $\sqrt{(x-3)^2}=9$ ; b) $\sqrt{4x^2+4x+1}=6$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\left(x-3\right)^2}=9\Leftrightarrow\left|x-3\right|=9\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=9\\x-3=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-6\end{cases}}\)
Vậy ...
b) \(\sqrt{4x^2+4x+1}=6\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\Leftrightarrow\orbr{\begin{cases}2x+1=6\\2x+1=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{2}\end{cases}}\)
Vậy ...
a)
(Do nên và nên )
.
b)
.
(Do nên )
c)
.
(Do nên và nên )
d)
.
(Do nên và )
a)
(Do nên và nên )
.
b)
.
(Do nên )
c)
.
(Do nên và nên )
d)
.
(Do nên và )
học văn buồn ngủ lắm , ko thể có hứng thú đc , mk nghĩ vậy !!
Tớ nghĩ cậu nên hay quan sát mọi thứ, đọc nhiều truyện,sách tham khảo.
Mik luôn được thầy cô khen ở môn văn,cậu cố lên nhé.
\(x^2\ge0\)với mọi x
\(-x^2\le0\)với mọi x
\(4-x^2\le4\)
Khi đó : \(-2\le\sqrt{4-x^2}\le2\)
Vì căn luôn dương nên \(0\le\sqrt{4-x^2}\le2\)
Vậy A max = 2 khi x = 0
A min = 0 khi x = 2
a) \(\sqrt{\left(x-3\right)^2}\)=9
<=> |x-3|=9
x=12 hoặc x=-6
b) \(\sqrt{4x^2+4x+1}\)=6
<=> |2x+1|=6
<=> x=\(\frac{5}{2}\) hoặc x=\(-\frac{7}{2}\)