Xác định các hằng số a,b sao cho
a) x4+ax3+bx-1 chia hết cho x2-1
b) x3+ax+b chia hết cho x2+x-2
Mn giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = ( 2x - 1 )( 4x2 + 2x + 1 ) - 2x( 2x - 7 )( 2x + 7 )
= ( 2x )3 - 13 - 2x( 4x2 - 49 )
= 8x3 - 1 - 8x3 + 98x = 98x - 1
a, \(x-xy+y-y^2=x\left(1-y\right)+y\left(1-y\right)=\left(x+y\right)\left(1-y\right)\)
b, \(x^2-4x+4=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
c, \(x^2-2x-3=\left(x-1\right)^2-4=\left(x-3\right)\left(x+1\right)\)
c, Đặt \(x^2-3x-1=t\)
\(t^2-12t+27=t^2-3t-9t+27=\left(t-9\right)\left(t-3\right)\)
Theo cách đặt \(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)
a) ĐK : a khác 0 , a khác b
\(=\frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}-\frac{a^2}{a\left(a-b\right)}-\frac{b^2}{a\left(a-b\right)}\)
\(=\frac{a^2-b^2-a^2-b^2}{a\left(a-b\right)}=-\frac{2b^2}{a\left(a-b\right)}\)
b) ĐK : x khác +-y
\(=\frac{x\left(x^2-y^2\right)}{\left(x-y\right)\left(x+y\right)}-\frac{xy\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}-\frac{x^3}{\left(x-y\right)\left(x+y\right)}\)
\(=\frac{x^3-xy^2-x^2y+xy^2-x^3}{\left(x-y\right)\left(x+y\right)}=-\frac{x^2y}{\left(x-y\right)\left(x+y\right)}\)
c) ĐK : x khác 2
\(=\frac{2x+8}{\left(x-2\right)^2}-\frac{7\left(x-2\right)}{\left(x-2\right)^2}=\frac{2x+8-7x+14}{\left(x-2\right)^2}=\frac{22-5x}{\left(x-2\right)^2}\)
d) ĐK : a khác 1
\(=\frac{3a^2+3}{\left(a-1\right)\left(a^2+a+1\right)}-\frac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{2\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{3a^2+3-a^2+2a-1+2a^2+2a+2}{\left(a-1\right)\left(a^2+a+1\right)}=\frac{4a^2+4a+4}{\left(a-1\right)\left(a^2+a+1\right)}=\frac{4\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}=\frac{4}{a-1}\)
C = ( 3x + 1 )2 - 2( 3x + 1 )( 3x + 5 ) + ( 3x + 5 )2
= [ ( 3x + 1 ) - ( 3x + 5 ) ]2
= ( 3x + 1 - 3x - 5 )2
= (-4)2 = 16
4m2+m=5n2+n
{=}5m2+m=5n2+n+m2
{=}5(m2-n2)+(m-n)=m2
{=}(m-n)(5m+5n+1)=m2
( x2 - 2 )2 + 4( x - 1 )2 - 4( x2 - 2 )( x - 1 ) = 0
<=> [ ( x2 - 2 ) - 2( x - 1 ) ]2 = 0
<=> ( x2 - 2 - 2x + 2 )2 = 0
<=> [ x(x-2) ]2 = 0
<=> x = 0 hoặc x = 2