K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2021

Các bạn chuyển \(1c^2\) thành \(2c^2\) cho mk nha

28 tháng 4 2021

1. Với m = -1 

Phương trình đã cho trở thành x2 + 2x - 3 = 0

Dễ thấy phương trình có a + b + c = 0 nên có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = -3

Vậy ...

2. a) Để phương trình có hai nghiệm phân biệt thì Δ' > 0

=> 1 - ( 4m + 1 ) > 0

<=> 1 - 4m - 1 > 0 <=> m < 0

b) Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2\\x_1x_2=\frac{c}{a}=4m+1\end{cases}}\)

Để phương trình có hai nghiệm trái dấu thì x1x2 < 0 <=> 4m + 1 < 0 <=> m < -1/4

c) x12 + x22 = 11 <=> ( x1 + x2 )2 - 2x1x2 = 11

<=> 4 - 2( 4m + 1 ) = 11

<=> -8m - 2 = 7

<=> m = -9/8

28 tháng 4 2021

giải dùm vs ạ

28 tháng 4 2021

Lời giải chi tiết

Vẽ OM⊥CDOM⊥CD 

Vì OM là một phần đường kính và CD là dây của đường tròn nên ta có M là trung điểm CD hay MC=MDMC=MD   (1) (định lý)

Tứ giác AHKBAHKB có AH⊥HK; BK⊥HK⇒HA//BKAH⊥HK; BK⊥HK⇒HA//BK.

Suy ra tứ giác AHKBAHKB là hình thang.  

Xét hình thang AHKBAHKB, ta có:

OM//AH//BKOM//AH//BK (cùng vuông góc với CDCD)

mà AO=BO=AB2AO=BO=AB2

⇒MO⇒MO là đường trung bình của hình thang AHKBAHKB.

⇒MH=MK⇒MH=MK   (2)

Từ (1) và (2)  ⇒MH−MC=MK−MD⇔CH=DK⇒MH−MC=MK−MD⇔CH=DK (đpcm)

Nhận xét: Kết quả của bài toán trên không thay đổi nếu ta đổi chỗ hai điểm CC và DD cho nhau.

16 tháng 8 2021

Kẻ OM vuông góc với dây CD.

Hình thang AHKB có

AO=OB và OM / / AH / / BK

nên MH=MK                                                    (1)

OM vuông góc với dây CD nên

MC=MD                                                              (2)
Từ (1) và (2) suy ra CH=DK.

28 tháng 4 2021

Lời giải chi tiết

a) Gọi OO là trung điểm của BC⇒OB=OC=BC2.BC⇒OB=OC=BC2.   (1)

Vì DODO là đường trung tuyến của tam giác vuông DBCDBC.

Theo tính chất trung tuyến ứng với cạnh huyền, ta có:  

             OD=12BCOD=12BC                                          (2)

Từ (1) và (2) suy ra OD=OB=OC=12BCOD=OB=OC=12BC

Do đó ba điểm B, D, CB, D, C cùng thuộc đường tròn tâm OO bán kính OBOB.

Lập luận tương tự, tam giác BEC vuông tại E có EO là đường trung tuyến ứng với cạnh huyền BC nên OE=OB=OC=12BCOE=OB=OC=12BC

Suy ra ba điểm B, E, CB, E, C cùng thuộc đường tròn tâm OO bán kính OBOB.

Do đó 4 điểm B, C, D, EB, C, D, E cùng thuộc đường tròn (O)(O) đường kính BCBC. 

b) Xét đường (O;BC2)(O;BC2), với BCBC là đường kính.

Ta có DEDE là một dây cung không đi qua tâm nên  ta có BC>DEBC>DE ( vì trong một đường tròn, dây lớn nhất là đường kính).

16 tháng 8 2021

a) Gọi \mathrm{M} là trung điểm của \mathrm{BC}.

Ta có EM=\dfrac{1}{2} BC, DM=\dfrac{1}{2} BC.

Suy ra ME=MB=MC=MD

do đó B, E, D, C cùng thuộc đường tròn đường kính BC.

b) Trong đường tròn nói trên, DE là dây, BC là đường kính nên DE<BC