1+1=???(giải thik) :))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi giá tiền 1 chiếc bánh ngọt ban đầu là $a$ (đồng). Giá từ cái bánh thứ 5 đổ đi là $0,9a$ đồng.
Giá tiền bạn Lan mua 44 cái bánh:
$[4a+0,9a(44-4)].0,95=684$
$\Leftrightarrow 40a=684:0,95=720$
$\Leftrightarrow a=18$ (nghìn đồng)
Số tiền bạn Lan trả nếu chưa được giảm thêm 5%:
$684:0,95=720$ (nghìn đồng)
Lời giải:
$S=3+3^2+3^3+3^4+....+3^{2024}$
$A=3+3^2+(3^3+3^4+3^5)+(3^6+3^7+3^8)+....+(3^{2022}+3^{2023}+3^{2024})$
$=12+3^3(1+3+3^2)+3^6(1+3+3^2)+.....+3^{2022}(1+3+3^2)$
$=12+(1+3+3^2)(3^3+3^6+....+3^{2022})$
$=12+13(3^3+3^6+....+3^{2022})$ chia 13 dư 12
Vậy $S$ không chia hết cho 13. Bạn xem lại đề.
\(S=3+3^2+3^3+3^4+...+3^{2024}\)
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2022}+3^{2023}+3^{2024}\right)\)
\(S=36+3^3.\left(3+3^2+3^3\right)+...+3^{2021}.\left(3+3^2+3^3\right)\)
\(S=36+3^3.36+...+3^{2021}.36\)
\(S=36.\left(1+3^3+...+3^{2021}\right)\)
Vì \(36⋮13\) nên \(36.\left(1+3^3+...+3^{2021}\right)⋮13\)
Vậy \(S⋮13\)
`#NqHahh`
Thời gian người đó đi hết quãng đường AB là:
9h30p-6h45p=2h45p=2,75(giờ)
Độ dài quãng đường AB là:
16x2,75=44(km)
Lời giải:
Ký hiệu như hình vẽ:
Bán kính nửa đường tròn thứ nhất: $10+a$ (cm)
Bán kính nửa đường tròn số hai: $6+a+b$ (cm)
Bán kính nửa đường tròn thứ ba: $8+b$ (cm)
Vì 3 đường tròn này giống nhau nên:
$10+a=6+a+b$ và $6+a+b=8+b$
Với $10+a=6+a+b$
$\Rightarrow 10=6+b$
$b=10-6=4$ (cm)
Bán kính mỗi đường tròn: $8+b=8+4=12$ (cm)
Tổng diện tích 3 nửa đường tròn:
$12\times 12\times 3,14:2\times 3=678,24$ (cm2)
a: Xét ΔCHB vuông tại H và ΔCBA vuông tại B có
\(\widehat{HCB}\) chung
Do đó: ΔCHB~ΔCBA
b:
Xét ΔAHB vuông tại H và ΔABC vuông tại B có
\(\widehat{HAB}\) chung
Do đó: ΔAHB~ΔABC
=>\(\dfrac{AH}{AB}=\dfrac{AB}{AC}\)
=>\(AB^2=AH\cdot AC\)
c: ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(AC=\sqrt{15^2+20^2}=25\left(cm\right)\)
ΔAHB~ΔABC
=>\(\dfrac{BH}{BC}=\dfrac{BA}{AC}\)
=>\(BH=\dfrac{AB\cdot BC}{AC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
d: Xét ΔBKH vuông tại K và ΔBHA vuông tại H có
\(\widehat{KBH}\) chung
Do đó: ΔBKH~ΔBHA
=>\(\dfrac{BK}{BH}=\dfrac{BH}{BA}\)
=>\(BH^2=BK\cdot BA\left(1\right)\)
Xét ΔBIH vuông tại I và ΔBHC vuông tại H có
\(\widehat{IBH}\) chung
Do đó: ΔBIH~ΔBHC
=>\(\dfrac{BI}{BH}=\dfrac{BH}{BC}\)
=>\(BH^2=BI\cdot BC\left(2\right)\)
Từ (1),(2) suy ra \(BK\cdot BA=BI\cdot BC\)
=>\(\dfrac{BK}{BC}=\dfrac{BI}{BA}\)
Xét ΔBKI vuông tại B và ΔBCA vuông tại B có
\(\dfrac{BK}{BC}=\dfrac{BI}{BA}\)
Do đó: ΔBKI~ΔBCA
e: ΔBCA vuông tại B
mà BM là đường trung tuyến
nên MB=MC
=>ΔMBC cân tại M
\(\widehat{NIB}+\widehat{NBI}=\widehat{MCB}+\widehat{MAB}=90^0\)
=>BM\(\perp\)IK tại N
ta có: \(BK\cdot BA=BH^2\)
=>\(BK\cdot15=12^2=144\)
=>BK=144/15=9,6(cm)
\(BI\cdot BC=BH^2\)
=>\(BI\cdot20=12^2=144\)
=>BI=7,2(cm)
Xét tứ giác BKHI có \(\widehat{BKH}=\widehat{BIH}=\widehat{KBI}=90^0\)
nên BKHI là hình chữ nhật
=>KI=BH=12(cm)
Xét ΔBIK vuông tại B có BN là đường cao
nên \(\left\{{}\begin{matrix}BN\cdot IK=BK\cdot BI\\KN\cdot KI=KB^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BN\cdot12=7,2\cdot9,6\\KN\cdot12=9,6^2\end{matrix}\right.\)
=>BN=5,76(cm); KN=7,68(cm)
ΔBKN vuông tại N
=>\(S_{BNK}=\dfrac{1}{2}\cdot NB\cdot NK=\dfrac{1}{2}\cdot5,76\cdot7,68=22,1184\left(cm^2\right)\)
\(\dfrac{3}{10}\left(giờ\right)=18\left(phút\right)\)
1/3 giờ=20 phút
2/5 giờ=24 phút
Vì 18<20<24<25
nên Quang đến trường trong thời gian ngắn nhất
thách trả lời đc :))
quá easy luôn 1+1=3
vì1+1=3 cs thế thôi