Câu 1:Tứ giác ABCD có AB = BC, CD = DA.
a. Chứng minh rằng BD là đường trung trực của AC.
b. Cho biết B = 100o, D = 70o, tính góc A và góc C.
Câu 2:Chứng minh rằng: n2 (n + 1) + 2n(n + 1) luôn chia hết cho 6 với mọi số nguyên n.
Giúp nhanh nha, 2h học rồi.
Câu 1:
a. Ta có: BA = BC (gt). Suy ra điểm B thuộc đường trung trực của AC.
Lại có: DA = DC (gt). Suy ra điểm D thuộc đường trung trực của AC.
Vì B và D là 2 điểm phân biệt cùng thuộc đường trung trực của AC nên đường thẳng BD là đường trung trực của AC.
b. Xét ΔBAD và ΔBCD, ta có:
BA = BC (gt)
DA = DC (gt)
BD cạnh chung
Suy ra: ΔBAD = ΔBCD (c.c.c)
⇒ ∠(BAD) = ∠(BCD)
Mặt khác, ta có: ∠(BAD) + ∠(BCD) + ∠(ABC) + ∠(ADC) = 360o
Suy ra: ∠(BAD) + ∠(BCD) = 360o – (∠(ABC) + ∠(ADC) )
2∠(BAD) = 360o – (100o + 70o) = 190o
⇒ ∠(BAD) = 190o : 2 = 95o
⇒ ∠(BCD) = ∠(BAD) = 95o
Câu 2:
Ta có \(n^2(n+1)+2n(n+1)=(n^2+2n).(n+1)=n(n+2).(n+1)=n(n+1)(n+2)\)
Vì n và \(n+1\) là \(2\) số nguyên liên tiếp nên có một số chia hết cho \(2\)
\(\Rightarrow n(n+1)⋮2\)
\(n,n+1,n+2\) là \(3\) số nguyên liên tiếp nên có một số chia hết cho \(3\)
\(\Rightarrow n(n+1)(n+2)⋮3\) mà ƯCLN \((2;3)=1\)
vậy \(n(n+1)(n+2)⋮(2.3)=6\) với mọi số nguyên \(n\)