\(\hept{\begin{cases}5x+3y=2\\15x+8y=3\end{cases}}\)
giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÂU 6:
\(P=2x+3y+\frac{6}{x}+\frac{10}{y}\)
\(=\left(\frac{6}{x}+\frac{3}{2}x\right)+\left(\frac{10}{y}+\frac{5}{2}y\right)+\frac{1}{2}\left(x+y\right)\)
\(\ge2\sqrt{\frac{6}{x}.\frac{3}{2}x}+2\sqrt{\frac{10}{y}.\frac{5y}{2}}+\frac{1}{2}\left(x+y\right)\)( BĐT cô si )
\(\ge6+10+2=18\)( do \(x+y\ge4\)
Dấu "=" xảy ra <=>x=y=2
Vậy Min P=18 <=> x=y=2
a) đk: \(\hept{\begin{cases}a>b\\a< -b\end{cases}}\left(b>0\right)\) hoặc \(\hept{\begin{cases}a>-b\\a< b\end{cases}\left(b< 0\right)}\)
Ta có:
\(B=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right)\div\frac{b}{a-\sqrt{a^2-b^2}}\)
\(B=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}\cdot\frac{a-\sqrt{a^2-b^2}}{b}\)
\(B=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)
\(B=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}=\frac{a-b}{\sqrt{a^2-b^2}}=\sqrt{\frac{a-b}{a+b}}\)
b) \(B< 1\Leftrightarrow\sqrt{\frac{a-b}{a+b}}< 1\Leftrightarrow\frac{a-b}{a+b}< 1\)
\(\Leftrightarrow\frac{-2b}{a+b}< 0\) ta xét 2TH:
Nếu \(b>0\Rightarrow a>-b\)
Nếu \(b< 0\Rightarrow a< -b\)
Vậy ...
Gọi vận tốc thực của cano là x( km/h) ĐK: \(x>4\)
Ta có: \(\hept{\begin{cases}V_{xuoidong}=x+4\left(km/h\right)\\V_{nguocdong}=x-4\left(km/h\right)\end{cases}}\)
Thời gian ca nô đi xuôi dòng là \(\frac{80}{x+4}\left(h\right)\)
Thời gian ca nô đi ngược dòng là\(\frac{80}{x-4}\left(h\right)\)
Theo bài ra ta có pt sau : \(\frac{80}{x+4}=\frac{80}{x-4}-\frac{1}{2}\)
\(\Leftrightarrow80\left(\frac{1}{x+4}-\frac{1}{x-4}\right)=\frac{-1}{2}\)
\(\Leftrightarrow\frac{-8}{x^2-16}=\frac{-1}{160}\)
\(\Rightarrow x^2-16=1280\)
\(\Leftrightarrow x^2=1296\)
\(\Leftrightarrow\orbr{\begin{cases}x=36\left(tm\right)\\x=-36\left(loai\right)\end{cases}}\)
Vậy vận tốc thực của ca nô là 36km/h
\(\Delta=\left(-2m\right)^2-4.\left(2m-3\right)\)
\(=4m^2-8m+12\)
\(\Delta'=m^{^2}-2m+3\)
\(=\left(m-1\right)^2+2\)
ĐKXĐ: x \(\ge\)1/2
Đặt: \(x+3=a\left(a>0\right)\)
\(\sqrt{2x-1}=b\) (b \(\ge\)0)
=> 3a + b2 = 3x + 9 + 2x - 1 = 5x + 8 => 5x - 1 = b2 + 3a - 9
Do đó, ta có: b2 + 3a - ab - 9 = 0
<=> (b - 3)(b + 3) - a(b - 3) = 0
<=> (b - 3)(b - a + 3) = 0
<=> \(\orbr{\begin{cases}b=3\\b-a+3=0\end{cases}}\)
Với b = 3=> \(\sqrt{2x-1}=3\)=> 2x - 1 = 9 => x = 5 (tm)
với b - a + 3 = 0 => \(\sqrt{2x-1}-x-3+3=0\)
<=> \(\sqrt{2x-1}=x\) (x \(\ge\)1/2)
<=> 2x - 1 = x2 <=> (x - 1)2 = 0 <=> x = 1 (tm)
Vậy S = {1; 5}
a3 + b3 \(\ge\frac{1}{4}\)
<=> (a + b)(a2 - ab + b2) \(\ge\frac{1}{4}\)
<=> a2 - ab + b2 \(\ge\frac{1}{4}\)
<=> 4a2 - 4ab + 4b2 \(\ge1\)
<=> 4a2 - 4a(1 - a) + 4(1 - a)2 \(\ge\)1
<=> 8a2 - 4a + 4(a2 - 2a + 1) \(\ge\)1
<=> 12a2 - 12a + 3 \(\ge\)0
<=> 3(4a2 - 4a + 1) \(\ge0\)
<=> (2a - 1)2 \(\ge\)0 (đúng)
Dấu "=" xảy ra <=> \(a=b=\frac{1}{2}\)
b) Vì \(a^3+b^3\ge\frac{1}{4}\Rightarrow\frac{1}{a^3+b^3}\ge4\)
Khi đó \(\frac{1}{a^3+b^3}+\frac{3}{ab}\ge16\)
<=> \(\frac{3}{ab}\ge12\)
<=> ab \(\ge\frac{1}{4}\)
<=> 4ab \(\ge1\)
<=> 4a(1 - a) \(\ge1\)
<=> (2a - 1)2 \(\ge0\)(đúng)
=> ĐPCM
Ta có: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\)
\(=\frac{x^3}{x\sqrt{1-x^2}}+\frac{y^3}{y\sqrt{1-y^2}}+\frac{z^3}{z\sqrt{1-z^2}}\)
\(\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}+\frac{y^3}{\frac{y^2+1-y^2}{2}}+\frac{z^3}{\frac{z^2+1-z^2}{2}}\)
\(=2x^3+2y^3+2z^3=2\left(x^3+y^3+z^3\right)=2\cdot\frac{3\sqrt{2}}{4}=\frac{3\sqrt{2}}{2}\)
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{\sqrt{2}}\)
\(\hept{\begin{cases}5x+3y=2\\15x+8y=3\end{cases}}\)
\(< =>\hept{\begin{cases}15x+9y=6\\15x+8y=3\end{cases}}\)
\(< =>\hept{\begin{cases}x=6-3=3\\5x+3y=2\end{cases}}\)
\(< =>\hept{\begin{cases}x=3\\15+3y=2\end{cases}}\)
\(< =>\hept{\begin{cases}x=3\\y=-\frac{13}{3}\end{cases}}\)
ngáo rồi :(((
Dòng 2 \(< =>\hept{\begin{cases}y=3\\5x+3y=2\end{cases}}\)
\(< =>\hept{\begin{cases}y=3\\5x=-7\end{cases}< =>\hept{\begin{cases}x=-\frac{7}{5}\\y=3\end{cases}}}\)