Cho tam giác ABC có AB < AC. Hai đường trung tuyến BM và CN cắt nhau tại G. Gọi E là trung điểm Bc. Chứng minh rằng:
a) A, G, E thẳng hàng
b) BM < CN
c) AE, BM, CN thỏa mãn bất đẳng thức tam giác.
Ai làm nhanh mình tick nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(x\right)=0\)
\(A\left(x\right)=\left(x^2-1\right)\left(x^2-9\right)...\left[x^2-\left(2n-1\right)^2\right]\left[x^2-\left(2n+1\right)^2\right]=0\)
Vậy nghiệm của đa thức A là \(=\left\{1;-1;3;-3;...;2n-1;1-2n;2n+1;-2n-1\right\}\)
Thấy các nghiệm tương ứng tạo thành cặp số đối nên tổng của chúng = 0
Ta có MH^2+MK^2=HK^2 (định lí Pitago )
Suy ra MH=6
Xét tam giác MHD và IHD ta có
góc MHD = góc IHD (phân giác)
HD chung
HM=HI
Suy ra tam giác MHD = tam giác IHD (c.g.c)
Nên góc HMD = góc HID = 90 độ
Do đó DI vuông góc HK
\(-8^4+6x^3-4x^2+2x-1\)
Giả sử \(x\) là nghiệm nguyên
Trường hợp 1 (1)
\(-8^4+6x^3-4x^2+2x-1 \vdots x\)
\(=> 1 \vdots x => x= -1;1\)
Thay \(x\) bằng 1, -1. Ta thấy giá trị của biểu thức sau khi thay khác 0 nên 1 và -1 không phải là nghiệm
Trường hợp 2 : (2)
\(x=0\). Thay x thành 0 cho ra kết quả biểu thức khác không nên 0 không phải nghiệm
=> Từ (1) và (2) suy ra đpcm
Bây giờ mình mới phát hiện là có phần bị khuất mất xin lỗi bạn
Trường hợp 1 (1)
Giả sử đa thức trên chia hết cho x
=> 1 chia hết cho x => x = 1 hoặc -1 (Lấy một ở cuối biểu thức nhe, lí do có phần suy ra này là bởi hiệu các số chia hết cho 1 số a bất kì sẽ chia hết cho số đó, áp dụng lại kiến thức học ở lớp 6)
Thay x thành 1 hoặc -1 ta được kết quả khác 0
Trường hợp 2 ...
giải:
ta có định lý sau: Trong các đường vuông góc và đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó, đường vuông góc ngắn hoặc bằng ( dấu"=:" xảy ra khidduowngf vuông góc này trùng với cả đường xiên) hơn mọi đường xiên.
ta thấy:điểm B nằm ngoài đường thẳng AK thẳng AK,\(BH\perp AK\) tại H (mình in đậm chữ đường thẳng vì nó khá trừu tượng nhé)
\(\Rightarrow BH\le BD\)
tương tự như vậy,ta cũng có điều sau:\(CK\le CD\)
\(\Rightarrow BH+CH\le BD+CD=BC\)
dấu"=" xảy ra \(\Leftrightarrow\) \(H\equiv K\equiv D\)(\(\equiv\) có nghĩa là trùng ) hay \(AD\perp BC\) \(\Rightarrow\) D là hình chiếu của A trên BC
vậy \(Max-HB+CK=BC\Leftrightarrow D\) là hình chiếu của A trên BC
đáp án lá c