K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
18 tháng 5 2021

\(x^2-xy+y^2=x+y+3\)

\(\Leftrightarrow2x^2-2xy+2y^2-2x-2y+2=8\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=8=0+4+4\)

\(8\)có cách phân tích duy nhất thành tổng của \(3\)số chính phương là \(0+4+4\)nên ta có các trường hợp sau: 

\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=4\\\left(y-1\right)^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=y=3\\x=y=-1\end{cases}}\)

\(\hept{\begin{cases}\left(x-y\right)^2=4\\\left(x-1\right)^2=0\\\left(y-1\right)^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1,y=3\\x=1,y=-1\end{cases}}\)

\(\hept{\begin{cases}\left(x-y\right)^2=4\\\left(x-1\right)^2=4\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3,y=1\\x=-1,y=1\end{cases}}\)

18 tháng 5 2021

x2 - xy + y2 = x + y + 3

<=> x2 - ( y + 1 )x + y2 - y - 3 = 0 (*)

Xét (*) ta có : Δ = b2 - 4ac = [ -( y + 1 ) ]2 - 4( y2 - y - 3 )

= y2 + 2y + 1 - 4y2 + 4y + 12 = -3y2 + 6y + 13

(*) có nghiệm <=> Δ ≥ 0 <=> -3y2 + 6y + 13 ≥ 0 <=> \(\frac{3-4\sqrt{3}}{3}\le y\le\frac{3+4\sqrt{3}}{3}\)

Vì y nguyên dương => y ∈ { 1 ; 2 ; 3 }

Với y = 1 (*) trở thành x2 - 2x - 3 = 0 có a - b + c = 0 nên có hai nghiệm x1 = -1 (ktm) ; x2 = -c/a = 3 (tm)

Với y = 2 (*) trở thành x2 - 3x - 1 = 0 có Δ = 13 không là SCP nên không có nghiệm nguyên

Với y = 3 (*) trở thành x2 - 4x + 3 = 0 có a + b + c = 0 nên có hai nghiệm x1 = 1 (tm) ; x2 = c/a = 3 (tm)

Vậy ( x ; y ) = { ( 3 ; 1 ) , ( 1 ; 3 ) , ( 3 ; 3 ) }

 

2
DD
14 tháng 5 2021

\(\sqrt{a^4+3a^2+1}\ge\sqrt{a^4+2a^2+1}=a^2+1\)

14 tháng 5 2021

thank

14 tháng 5 2021

+)Ta có : x4 + y4 < x4 + x3y + x2y2 + xy3 + y4

Mà x > y > 1  x - y > 0 

 ( x - y ) ( x4 + y) < ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) ( * )

+)Ta có : ( x - y ) ( x4 + x3y + x2y2 + xy3 + y

            = x ( x4 + x3y + x2y2 + xy3 + y) - y ( x4 + x3y + x2y2 + xy3 + y

            = x5 + x4y + x3y2 + x2y+ xy4 - x4y -  x3y2 - x2y3 -  xy4 - y5

            = x5 - y5

 ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) = x5 - y5 ( ** )

Từ ( * ) ; ( ** ) 

  ( x - y ) ( x4 + y) <  x5 - y5

Mà   x5 - y5 < x5 + y5 

 ( x - y ) ( x4 + y) <  x5 - y5

 ( x - y ) ( x4 + y) < x - y 

  x4 + y4 < 1 ( đpcm ) 

14 tháng 5 2021
Bật thầy huấn bn ơi cho em ấy hiểu
14 tháng 5 2021

oke bn

14 tháng 5 2021

a. Xét (O) , có


CD \(\perp\)AB = {I}


=> \(\widehat{CIB}=90^o\Rightarrow\widehat{FIB}=90^o\) 

Có: \(\widehat{AEB}\)là góc nội tiếp chắn nửa đường tròn đường kính AB

\(\Rightarrow\widehat{AEB}=90^o\Rightarrow\widehat{IEB}=90^o\)

Xét tứ giác EFIB, có:

\(\widehat{FEB}+\widehat{FIB}=90^o+90^o=180^o\)

2 góc \(\widehat{FEB}\)và \(\widehat{FIB}\)là 2 góc đối nhau




=> EFIB là tứ giác nội tiếp (dhnb) (đpcm)

14 tháng 5 2021
b) ∆AFI ~ ∆ABE ( g.g ) => AF/AB = AI/AE => AF.AE = AI.AB Nên AF.AE-AI.AB = 0 c ) Nghĩ là đề sai vì nếu ngoại tiếp ∆ACE thì chỉ có tâm O thôi,nếu như đề đúng thì O1 sẽ trùng với O mất rồi
14 tháng 5 2021

Để dễ hình dung thì ta đặt: \(\hept{\begin{cases}\sqrt[3]{x}=a\\\sqrt[3]{y}=b\\\sqrt[3]{z}=c\end{cases}}\) khi đó BT cần chứng minh trở thành:

\(a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

\(VP=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=a^3+b^3+c^3-3abc\) (HĐT sau vở hoặc nhân ra)

=> đpcm

14 tháng 5 2021

Đặt \(\sqrt[3]{x}=a;\sqrt[3]{y}=b;\sqrt[3]{z}=c\)

Ta có :(+) \(x+y+z-3\sqrt[3]{xyz}=a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\left(a+b+c\right)\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}=\frac{1}{2}.\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2^{ }\right]\)

(+)\(\frac{1}{2}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\left[\left(\sqrt[3]{x}-\sqrt[3]{y}\right)^2+\left(\sqrt[3]{y}-\sqrt[3]{z}\right)^2+\left(\sqrt[3]{z}-\sqrt[3]{x}\right)^2\right]\)

\(\frac{1}{2}.\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

Suy ra điều phải chứng minh 

14 tháng 5 2021

Với \(x\ge0;x\ne1\)

\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{2}\left(\frac{1}{x-\sqrt{x}}-\frac{1}{x+\sqrt{x}}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{2}\left(\frac{x+\sqrt{x}-x+\sqrt{x}}{x^2-x}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{2}\left(\frac{2\sqrt{x}}{x\left(x-1\right)}\right)=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{2}.\frac{2}{\sqrt{x}\left(x-1\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}=\frac{x\left(\sqrt{x}+1\right)-x-\sqrt{x}}{\sqrt{x}\left(x-1\right)}\)

\(=\frac{x\sqrt{x}-\sqrt{x}}{\sqrt{x}\left(x-1\right)}=\frac{\sqrt{x}\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=1\)

14 tháng 5 2021

Ta có: \(\left(x+2\right)\left(x+4\right)\left(x^2-1\right)=27\)

\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x-1\right)\left(x+1\right)=27\)

\(\Leftrightarrow\left[\left(x+2\right)\left(x+1\right)\right]\left[\left(x+4\right)\left(x-1\right)\right]=27\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-4\right)=27\)

Đặt \(x^2+3x-1=a\)

\(PT\Leftrightarrow\left(a-3\right)\left(a+3\right)=27\)

\(\Leftrightarrow a^2-9=27\Leftrightarrow a^2=36\Leftrightarrow\orbr{\begin{cases}a=6\\a=-6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+3x-1=6\\x^2+3x-1=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+3x-7=0\\x^2+3x+5=0\left(kcn^0\right)\end{cases}}\)

\(\Rightarrow x^2+3x-7=0\Leftrightarrow\orbr{\begin{cases}x=\frac{-3+\sqrt{37}}{2}\\x=\frac{-3-\sqrt{37}}{2}\end{cases}}\)

Vậy tập nghiệm của PT S = ...