chung minh : 1/22 + 1/32 + 1/42 + .... + 1/1002 < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số người lớn trong rạp chiếu phim là:
\(580\times\dfrac{4}{10}=232\) (người)
Số trẻ con trong rạp chiếu phim là:
\(580-232=348\) (người)
Đáp số: ...
Có số người lớn là:
580x\(\dfrac{4}{10}\)=232(người)
Số trẻ con là:
580-232=348(người)
Đs:232 người
348 người
\(\dfrac{2}{3}x\) - \(\dfrac{1}{2}x\) = \(\dfrac{5}{12}\)
\(\dfrac{1}{6}x\) = \(\dfrac{5}{12}\)
\(x\) = \(\dfrac{5}{12}\) : \(\dfrac{1}{6}\)
\(x\) = \(\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
Gọi O là giao điểm AC và BD \(\Rightarrow O\) là trung điểm BD và AC
Do G là trọng tâm tam giac BCD \(\Rightarrow OG=\dfrac{1}{3}OC=\dfrac{1}{3}OA\)
Mà \(GA\cap\left(A'BD\right)=O\Rightarrow d\left(G;\left(A'BD\right)\right)=\dfrac{1}{3}d\left(A;\left(A'BD\right)\right)\)
Trong mp (ABCD), từ A kẻ \(AH\perp BD\)
Trong mp (A'AH), từ A kẻ \(AK\perp A'H\)
\(\Rightarrow AK\perp\left(A'BD\right)\Rightarrow AK=d\left(A;\left(A'BD\right)\right)\)
Hệ thức lượng tam giác vuông ABD:
\(AH=\dfrac{AB.AD}{\sqrt{AB^2+AD^2}}=\dfrac{2a\sqrt{5}}{5}\)
Hệ thức lượng trong tam giác vuông A'AH:
\(AK=\dfrac{A'A.AH}{\sqrt{A'A^2+AH^2}}=\dfrac{2a}{3}\)
\(\Rightarrow d\left(G;\left(A'BD\right)\right)=\dfrac{1}{3}AK=\dfrac{2a}{9}\)
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD
Do đó: ΔAMB=ΔCMD
b: ΔAMB=ΔCMD
=>AB=CD
mà AB=AC
nên CD=CA
=>ΔCDA cân tại C
c: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔABC có
AH,BM là các đường trung tuyến
AH cắt BM tại I
Do đó: I là trọng tâm của ΔABC
Xét ΔIBC có
IH là đường cao
IH là đường trung tuyến
Do đó: ΔIBC cân tại I
=>IB=IC
Xét ΔABC có
BM là đường trung tuyến
I là trọng tâm
Do đó: \(BI=\dfrac{2}{3}BM=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)
=>BD=3BI
Xét ΔABC có
I là trọng tâm
CI cắt AB tại N
Do đó: N là trung điểm của AB; IN=1/2IC
=>\(IN=\dfrac{1}{2}IB\)
\(\dfrac{IN}{BD}=\dfrac{BI}{2}:3BI=\dfrac{BI}{2\cdot3BI}=\dfrac{1}{6}\)
CM:A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ... + \(\dfrac{1}{100^2}\) < 1
\(\dfrac{1}{2^2}\) = \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) = \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) = \(\dfrac{1}{4.4}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
\(\dfrac{1}{100^2}\) = \(\dfrac{1}{100.100}\) < \(\dfrac{1}{99.100}\) = \(\dfrac{1}{99}-\dfrac{1}{100}\)
Cộng vế với vế ta có:
\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ... + \(\dfrac{1}{100^2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\) < 1 (đpcm)