Tìm X để
a 2x2+5x-1 là số âm
b -3x2+3x+1 là số dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=5x^2-\left(2x+1\right)\left(x-2\right)-x\left(3x+3\right)+7\)
\(=5x^2-2x^2+3x+2-3x^2-3x+7=9\)
Vậy biểu thức ko phụ thuộc giá trị biến x
b, \(B=-2\left(x-7\right)\left(x+3\right)+\left(5x-1\right)\left(x+4\right)-3x^2-27x\)
\(=-2\left(x^2-4x-21\right)+5x^2+19x-4-3x^2-27x\)
\(=-2x^2+8x+42+2x^2-8x-4=38\)
Vậy biểu thức ko phụ thuộc giá trị biến x
\(a.4x^2-20x-4x^2+3x-4x+3=5\)
\(-17x+3=5\)
\(-17x=2\)
\(x=-\frac{2}{17}\)
\(4x\left(x-5\right)-\left(x-1\right)\left(4x-3\right)=5\)
\(\Leftrightarrow4x^2-20x-4x^2-\left(4x^2-3x-4x+3\right)=5\)
\(\Rightarrow4x^2-20x-4x^2+7x+3=5\)
\(\Leftrightarrow-13x+3-5=0\)
\(\Leftrightarrow x=-\frac{2}{13}\)
\(=\left(x^2-1^2\right)\left(x+2\right)=\left(x^2-1\right)\left(x+2\right)=x^3+2x^2-x+2\)
hằng đẳng thức số 3
Sai thông cảm ặ
\(-3x^2+3x+1=-3\left(x^2-x-\frac{1}{3}\right)=-3\left(x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{7}{12}\right)=-3[\left(x-\frac{1}{2}\right)^2-\frac{7}{12}]\)
Mà để \(-3[\left(x-\frac{1}{2}\right)^2-\frac{7}{12}\)là số dương \(\Leftrightarrow-3[\left(x-\frac{1}{2}\right)^2-\frac{7}{12}]>0\)
Mà \(\left(-3\right)< 0\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{7}{12}< 0\Rightarrow\left(x-\frac{1}{2}\right)^2< \frac{7}{12}\Rightarrow\left(x-\frac{1}{2}\right)^2< \left(\frac{\sqrt{7}}{2\sqrt{3}}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}>0-\frac{\sqrt{7}}{2\sqrt{3}}\\x-\frac{1}{2}< \frac{\sqrt{7}}{2\sqrt{3}}\end{cases}}\)
\(\Rightarrow\frac{-\sqrt{7}+\sqrt{3}}{2\sqrt{3}}< x< \frac{\sqrt{7}+\sqrt{3}}{2\sqrt{3}}\)thì \(-3x^2+3x+1>0\)