3x-1=x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x^2+xy\right)-\left(x+y\right)-\left(2xy^2-2y^2\right)=1\)
\(\Leftrightarrow x\left(x+y\right)-\left(x+y\right)-2y^2\left(x-1\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(x+y\right)-2y^2\left(x-1\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(x+y-2y^2\right)=1=1.1=\left(-1\right).\left(-1\right)\)
Th1: \(\left\{{}\begin{matrix}x-1=1\\x+y-2y^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2+y-2y^2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y^2-y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left[{}\begin{matrix}y=1\\y=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Th2: \(\left\{{}\begin{matrix}x-1=-1\\x+y-2y^2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\0+y-2y^2=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2y^2-y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\\left[{}\begin{matrix}y=1\\y=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt có 2 cặp nghiệm nguyên \(\left(x;y\right)=\left(2;1\right);\left(0;1\right)\)
Gọi tuổi của người thứ hai cách đây 10 năm là x (x>0)
Tuổi của người thứ nhất cách đây 10 năm là: \(3x\)
Tuổi của người thứ nhất sau đây 2 năm là: \(3x+12\)
Tuổi của người thứ hai sau đây 2 năm là: \(x+12\)
Do sau đây 1 năm tuổi người thứu hai bằng 1 nửa tuổi người thứ nhất nên ta có pt:
\(x+12=\dfrac{1}{2}\left(3x+12\right)\)
\(\Leftrightarrow2x+24=3x+12\)
\(\Leftrightarrow x=12\)
Vậy tuổi của người thứ nhất hiện nay là \(3x+10=46\) tuổi, tuổi của người thứ hai hiện nay là \(x+10=22\) tuổi
6:
\(2x^2+3xy-2y^2=7\)
=>\(2x^2+4xy-xy-2y^2=7\)
=>\(2x\left(x+2y\right)-y\left(x+2y\right)=7\)
=>(x+2y)(2x-y)=7
=>\(\left(x+2y;2x-y\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
TH1: \(\left\{{}\begin{matrix}x+2y=1\\2x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+4y=2\\2x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5y=-5\\x+2y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-1\\x=1-2y=1-2\cdot\left(-1\right)=3\end{matrix}\right.\)
=>Nhận
TH2: \(\left\{{}\begin{matrix}x+2y=7\\2x-y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+2y=7\\4x-2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=9\\2x-y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1,8\\y=2x-1=2\cdot1,8-1=2,6\end{matrix}\right.\)
=>Loại
TH3: \(\left\{{}\begin{matrix}x+2y=-1\\2x-y=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+4y=-2\\2x-y=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5y=-2+7=5\\2x-y=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=1\\2x=-7+y=-7+1=-6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
=>Nhận
TH4: \(\left\{{}\begin{matrix}x+2y=-7\\2x-y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+2y=-7\\4x-2y=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=-9\\2x-y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-1,8\\y=2x+1=2\cdot\left(-1,8\right)+1=-2,6\end{matrix}\right.\)
=>Loại
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
ΔHBA~ΔABC
=>\(\dfrac{HA}{AC}=\dfrac{BA}{BC}\)
=>\(HA=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)
c: Xét ΔDAB có DE là phân giác
nên \(\dfrac{EA}{EB}=\dfrac{DA}{DB}\)
Xét ΔDAC có DF là phân giác
nên \(\dfrac{FC}{FA}=\dfrac{DC}{DA}\)
\(\dfrac{EA}{EB}\cdot\dfrac{FC}{FA}\cdot\dfrac{DB}{DC}\)
\(=\dfrac{DA}{DB}\cdot\dfrac{DC}{DA}\cdot\dfrac{DB}{DC}=1\)
ĐKXĐ: \(x\notin\left\{0;3;1\right\}\)
\(\left(\dfrac{x+3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
\(=\dfrac{\left(x+3\right)\left(x-3\right)-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2x-2}\)
\(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
=0
Xét ΔABF vuông tại F và ΔACE vuông tại E có
\(\widehat{BAF}\) chung
Do đó: ΔABF~ΔACE
=>\(\dfrac{AF}{AE}=\dfrac{AB}{AC}\)
=>\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\)
Xét ΔAFE và ΔABC có
\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\)
\(\widehat{FAE}\) chung
Do đó: ΔAFE~ΔABC
1:
a: Sửa đề: Chứng minh ΔAMB~ΔANC
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
\(\widehat{MAB}=\widehat{NAC}\)
Do đó: ΔAMB~ΔANC
b: ΔAMB~ΔANC
=>\(\dfrac{AM}{AN}=\dfrac{MB}{NC}\)
Xét ΔDMB vuông tại M và ΔDNC vuông tại N có
\(\widehat{MDB}=\widehat{NDC}\)(hai góc đối đỉnh)
Do đó: ΔDMB~ΔDNC
=>\(\dfrac{DM}{DN}=\dfrac{BM}{NC}\)
=>\(\dfrac{DM}{DN}=\dfrac{AM}{AN}\)
=>\(DM\cdot AN=AM\cdot DN\)
1:
a: Sửa đề: Chứng minh ΔAMB~ΔANC
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
\(\widehat{MAB}=\widehat{NAC}\)
Do đó: ΔAMB~ΔANC
b: ΔAMB~ΔANC
=>\(\dfrac{AM}{AN}=\dfrac{MB}{NC}\)
Xét ΔDMB vuông tại M và ΔDNC vuông tại N có
\(\widehat{MDB}=\widehat{NDC}\)(hai góc đối đỉnh)
Do đó: ΔDMB~ΔDNC
=>\(\dfrac{DM}{DN}=\dfrac{BM}{NC}\)
=>\(\dfrac{DM}{DN}=\dfrac{AM}{AN}\)
=>\(DM\cdot AN=AM\cdot DN\)
TĐB, ta có: (chép lại đề bài)
=> 3x = x + 5 + 1
=> 3x = x + 6
=> 3x - x = 6
=> x(3-1) = 6
=> 2x = 6
=> x = 6 : 2
=> x = 3
Vậy x = 3