Cho \(0< a,b,c< 1\). Chứng minh: \(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-6x+2m-3=0\)
\(\Delta=b^2-4ac=36-4\left(2m-3\right)=36-8m+12=48-8m\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)\(< =>48-8m>0< =>48>8m< =>6>m\)
Theo Vi-ét ta có :\(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m-3\\x_1+x_2=\frac{-b}{a}=6\end{cases}}\)là
\(x_1\)là nghiệm phương trình \(x_1^2-6x_1+2m-3=0\)
\(=>x_1^2=3-2m+6x_1\)
\(x_2\)là nghiệm phương trình \(x_2^2-6x_2+2m-3=0\)
\(=>x_2^2=3-2m+6x_2\)
Mà \(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=2\)
\(\left(3-2m+6x_1-5x_1+2m-4\right)\left(3-2m+6x_2-5x_2+2m-4\right)=2\)
\(\left(3+x_1-4\right)\left(3+x_2-4\right)=2\)
\(\left(x_1-1\right)\left(x_2-1\right)=2\)
\(x_1x_2-x_1-x_2+1=2\)
\(x_1x_2-\left(x_1+x_2\right)=1\)
\(2m-3-6=1\)
\(2m-9=1\)
\(m=5\)
Vậy m=5
Tính giá trị biểu thức
a, \(\sqrt{2+\sqrt[]{3}}\)
b, \(\sqrt{9+4\sqrt{5}}\)
c, \(\sqrt{7+\sqrt[]{24}}\)
a, Đặt A = \(\sqrt{2+\sqrt{3}}\)
\(\sqrt{2}A=\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Rightarrow A=\frac{\sqrt{3}+1}{\sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{2}\)
b, \(\sqrt{9+4\sqrt{5}}=\sqrt{5+4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{5}+2\)
c, \(\sqrt{7+\sqrt{24}}=\sqrt{7+2\sqrt{6}}=\sqrt{6+2\sqrt{6}+1}=\sqrt{\left(\sqrt{6}+1\right)^2}=\sqrt{6}+1\)
a) Áp dụng đl Vi-ét vào pt ta có:
x1+x2=-1.5
x1 . x2= -13
C=x1(x2+1)+x2(x1+1)
= 2x1x2 + x1+x2
= 2.(-13) -1.5
= -26 -1.5
= -27.5
a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)
Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)
\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)
\(f\left(x\right)=x^2-2\left(m+5\right)x+m^2+4m-3=0\)
Phương trình cho có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow6m+28>0\Leftrightarrow m>-\frac{14}{3}\left(1\right)\)
ycbt\(\Leftrightarrow\hept{\begin{cases}-2< m+5< 4\\f\left(-2\right)>0\\f\left(4\right)>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-7< m< -1\\m^2+8m+21>0\\m^2-4m-27>0\end{cases}}\Leftrightarrow-7< m< 2-\sqrt{31}\left(2\right)\)
Từ (1),(2) suy ra \(-\frac{14}{3}< m< 2-\sqrt{31}.\)
\(\hept{\begin{cases}\frac{2}{x}+\frac{1}{y}=2\\\frac{6}{x}-\frac{2}{y}=1\end{cases}}\)ĐK : \(x;y\ne0\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b\)
\(\Leftrightarrow\hept{\begin{cases}2a+b=2\\6a-2b=1\end{cases}\Leftrightarrow\hept{\begin{cases}4a+2b=4\\6a-2b=1\end{cases}\Leftrightarrow}\hept{\begin{cases}10a=5\\2a+b=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a=\frac{1}{2}\\2a+b=2\end{cases}}}\)
Thay a = 1/2 vào pt 2 ta được :
\(1+b=2\Leftrightarrow b=1\)
Theo cách đặt \(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)( tm )
Vậy hệ pt có một nghiệm ( x ; y ) = ( 2 ; 1 )
\(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)
\(\Rightarrow\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}}=\frac{\sqrt{bc}}{2abc}\).
Tương tự ta có: \(\frac{1}{b^2+ac}\le\frac{\sqrt{ac}}{2abc},\frac{1}{c^2+ba}\le\frac{\sqrt{ba}}{2abc}\).
Ta lại có: \(a+b\ge2\sqrt{ab},b+c\ge2\sqrt{bc},c+a\ge2\sqrt{ca}\Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\).
Do đó ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ba}\le\frac{\sqrt{bc}}{2abc}+\frac{\sqrt{ac}}{2abc}+\frac{\sqrt{ba}}{2abc}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)
\(\le\frac{a+b+c}{2abc}\)
Dấu \(=\)xảy ra khi \(a=b=c>0\).
Ta có:
\(0< a,b< 1\)nên \(a^3< a^2< a< 1,b^3< b^2< b< 1\)
\(\left(1-a^2\right)\left(1-b\right)>0\Leftrightarrow1+a^2b>a^2+b>a^3+b^3\)
Tương tự ta cũng có: \(b^3+c^3< 1+b^2c,c^3+a^3< 1+c^2a\)
Cộng vế với vế lại ta có đpcm.