Bóng (AK) của một cột điện (MK) trên mặt đất dài 6 m. Cùng lúc đó một cột đèn giao thông
(DE) cao 3 m có bóng (AE) dài 2 m. Tính chiều cao của cột điện (M K).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{DAB}\) chung
Do đó: ΔADB~ΔAEC
=>\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
=>\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
\(\widehat{DAE}\) chung
Do đó: ΔADE~ΔABC
=>\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
\(\widehat{DAE}\) chung
Do đó: ΔADE~ΔABC
b: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔHEB~ΔHDC
=>\(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)
=>\(HE\cdot HC=HB\cdot HD\)
c: Ta có: BH\(\perp\)AC tại D
CK\(\perp\)AC
Do đó: BH//CK
ta có:CH\(\perp\)AB
BK\(\perp\)AB
Do đó: CH//BK
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
=>H,M,K thẳng hàng
ΔAED~ΔACB
=>\(\widehat{AED}=\widehat{ACB}\)
d: Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại O
Xét ΔBEC vuông tại Evà ΔBOA vuông tại O có
\(\widehat{EBC}\) chung
Do đó:ΔBEC~ΔBOA
=>\(\dfrac{BE}{BO}=\dfrac{BC}{BA}\)
=>\(BE\cdot BA=BO\cdot BC\)
Xét ΔCDB vuông tại D và ΔCOA vuông tại O có
\(\widehat{DCB}\) chung
DO đó: ΔCDB~ΔCOA
=>\(\dfrac{CD}{CO}=\dfrac{CB}{CA}\)
=>\(CD\cdot CA=CO\cdot CB\)
\(BE\cdot BA+CD\cdot CA\)
\(=BO\cdot BC+CO\cdot BC\)
\(=BC\left(BO+CO\right)=BC^2\)
Xét hai tam giác CIB và AFC có:
\(\left\{{}\begin{matrix}\widehat{CIB}=\widehat{AFC}=90^0\\\widehat{BCI}=\widehat{CAF}\left(\text{so le trong}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta CIB\sim\Delta AFC\left(g.g\right)\)
\(\Rightarrow\dfrac{CI}{AF}=\dfrac{BC}{CA}\Rightarrow AF.BC=CI.CA\)
\(\Leftrightarrow\left(x^2+xy\right)-\left(x+y\right)-\left(2xy^2-2y^2\right)=1\)
\(\Leftrightarrow x\left(x+y\right)-\left(x+y\right)-2y^2\left(x-1\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(x+y\right)-2y^2\left(x-1\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(x+y-2y^2\right)=1=1.1=\left(-1\right).\left(-1\right)\)
Th1: \(\left\{{}\begin{matrix}x-1=1\\x+y-2y^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2+y-2y^2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y^2-y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left[{}\begin{matrix}y=1\\y=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Th2: \(\left\{{}\begin{matrix}x-1=-1\\x+y-2y^2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\0+y-2y^2=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2y^2-y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\\left[{}\begin{matrix}y=1\\y=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt có 2 cặp nghiệm nguyên \(\left(x;y\right)=\left(2;1\right);\left(0;1\right)\)
Gọi tuổi của người thứ hai cách đây 10 năm là x (x>0)
Tuổi của người thứ nhất cách đây 10 năm là: \(3x\)
Tuổi của người thứ nhất sau đây 2 năm là: \(3x+12\)
Tuổi của người thứ hai sau đây 2 năm là: \(x+12\)
Do sau đây 1 năm tuổi người thứu hai bằng 1 nửa tuổi người thứ nhất nên ta có pt:
\(x+12=\dfrac{1}{2}\left(3x+12\right)\)
\(\Leftrightarrow2x+24=3x+12\)
\(\Leftrightarrow x=12\)
Vậy tuổi của người thứ nhất hiện nay là \(3x+10=46\) tuổi, tuổi của người thứ hai hiện nay là \(x+10=22\) tuổi
6:
\(2x^2+3xy-2y^2=7\)
=>\(2x^2+4xy-xy-2y^2=7\)
=>\(2x\left(x+2y\right)-y\left(x+2y\right)=7\)
=>(x+2y)(2x-y)=7
=>\(\left(x+2y;2x-y\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
TH1: \(\left\{{}\begin{matrix}x+2y=1\\2x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+4y=2\\2x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5y=-5\\x+2y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-1\\x=1-2y=1-2\cdot\left(-1\right)=3\end{matrix}\right.\)
=>Nhận
TH2: \(\left\{{}\begin{matrix}x+2y=7\\2x-y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+2y=7\\4x-2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=9\\2x-y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1,8\\y=2x-1=2\cdot1,8-1=2,6\end{matrix}\right.\)
=>Loại
TH3: \(\left\{{}\begin{matrix}x+2y=-1\\2x-y=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+4y=-2\\2x-y=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5y=-2+7=5\\2x-y=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=1\\2x=-7+y=-7+1=-6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
=>Nhận
TH4: \(\left\{{}\begin{matrix}x+2y=-7\\2x-y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+2y=-7\\4x-2y=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=-9\\2x-y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-1,8\\y=2x+1=2\cdot\left(-1,8\right)+1=-2,6\end{matrix}\right.\)
=>Loại
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
ΔHBA~ΔABC
=>\(\dfrac{HA}{AC}=\dfrac{BA}{BC}\)
=>\(HA=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)
c: Xét ΔDAB có DE là phân giác
nên \(\dfrac{EA}{EB}=\dfrac{DA}{DB}\)
Xét ΔDAC có DF là phân giác
nên \(\dfrac{FC}{FA}=\dfrac{DC}{DA}\)
\(\dfrac{EA}{EB}\cdot\dfrac{FC}{FA}\cdot\dfrac{DB}{DC}\)
\(=\dfrac{DA}{DB}\cdot\dfrac{DC}{DA}\cdot\dfrac{DB}{DC}=1\)
Do MK song song DE (cùng vuông góc mặt đất AK), áp dụng định lý Thales:
\(\dfrac{AE}{AK}=\dfrac{DE}{MK}\Rightarrow MK=\dfrac{DE.AK}{AE}=\dfrac{3.6}{2}=9\left(m\right)\)