K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Khoảng cách từ O đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\left(m^2+1\right)+0\cdot\left(-1\right)+2\right|}{\sqrt{\left(m^2+1\right)^2+1}}=\dfrac{2}{\sqrt{\left(m^2+1\right)^2+1}}\)

\(\sqrt{\left(m^2+1\right)^2+1}>=\sqrt{1+1}=\sqrt{2}\)

=>\(d\left(O;\left(d\right)\right)=\dfrac{2}{\sqrt{\left(m^2+1\right)^2+1}}< =\sqrt{2}\forall m\)

Dấu '=' xảy ra khi m=0

15 tháng 4

Gọi (d): y = kx + b

Do (d) đi qua M(0; 2) nên b = 2

⇒ (d): y = kx + 2

Phương trình hoành độ giao điểm của (P) và (d):

1/2 x² = kx + 2

⇔ x² = 2kx + 4

⇔ x² - 2kx - 4 = 0

∆' = (-k)² - 1.(-4)

= k² + 4 > 0 với mọi k ∈ R

Vậy (d) luôn cắt (P) tại hai điểm phân biệt A, B

15 tháng 4

Phương trình hoành độ giao điểm của (P) và (d):

-x² = -mx + m - 1

⇔ x² - mx + m - 1 = 0

∆ = (-m)² - 4.(m - 1)

= m² - 4m + 1

= m² - 4m + 4 - 3

= (m - 2)² - 3

Để (d) cắt (P) tại hai điểm phân biệt thì ∆ > 0

⇔ (m - 2)² - 3 > 0

⇔ (m - 2)² > 3

⇔ m - 2 < -√3 hoặc m - 2 > √3

*) m - 2 < -√3

⇔ m < 2 - √3

*) m - 2 > √3

⇔ m > 2 + √3

⇒ m < 2 - √3; m > 2 + √3 thì (d) cắt (P) tại hai điểm phân biệt

Theo hệ thức Vi-ét, ta có:

x₁ + x₂ = m

x₁x₂ = m - 1

1/x₁ + 1/x₂ = 3/2

⇔ (x₁ + x₂)/(x₁x₂) = 3/2

⇔ m/(m - 1) = 3/2

⇔ 2m = 3(m - 1)

⇔ 2m = 3m - 3

⇔ 3m - 2m = 3

⇔ m = 3 (loại)

Vậy không tìm được m thỏa mãn đề bài

15 tháng 4

tính sai r ạ

 

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=mx-2m+2\)

=>\(\dfrac{1}{2}x^2-mx+2m-2=0\)

\(\text{Δ}=\left(-m\right)^2-4\cdot\dfrac{1}{2}\left(2m-2\right)\)

\(=m^2-2\left(2m-2\right)=m^2-4m+4=\left(m-2\right)^2>=0\forall m\)

Để (d) cắt (P) tại hai điểm phân biệt thì Δ>0

=>\(\left(m-2\right)^2>0\)

=>\(m-2\ne0\)

=>\(m\ne2\)

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1x_2=\dfrac{c}{a}=\left(2m-2\right):\dfrac{1}{2}=4m-4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_2=8x_1\\x_1+x_2=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x_1=2m\\x_2=8x_1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_1=\dfrac{2}{9}m\\x_2=8\cdot\dfrac{2}{9}m=\dfrac{16}{9}m\end{matrix}\right.\)

\(x_1x_2=4m-4\)

=>\(\dfrac{2}{9}m\cdot\dfrac{16}{9}m=4m-4\)

=>\(\dfrac{32}{81}m^2-4m+4=0\)(1)

\(\text{Δ}=\left(-4\right)^2-4\cdot\dfrac{32}{81}\cdot4=\dfrac{784}{81}\)

Do đó: phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{4-\dfrac{28}{9}}{2\cdot\dfrac{32}{81}}=\dfrac{9}{8}\left(nhận\right)\\m_2=\dfrac{4+\dfrac{28}{9}}{2\cdot\dfrac{32}{81}}=9\left(nhận\right)\end{matrix}\right.\)

14 tháng 4

a) Ta có ∠MAB + ∠MOB = 90° + 90° = 180° (vì MA, MB là tiếp tuyến của (O) tại A, B)
Suy ra, tứ giác MAOB nội tiếp.

- SC.SB = SA.SE:

Ta có ∠SCE = ∠SAE = 90° (vì EC là đường kính của (O))
Suy ra, tam giác SCE và tam giác SAE vuông cùng tại E và có cạnh chung là SE
Do đó, SC.SB = SA.SE theo định lý hình chiếu.

b) Ta có ∠ACS = ∠AOM = 90° và ∠CAS = ∠MAO (vì tứ giác MAOB nội tiếp)
Suy ra, tam giác ACS đồng dạng tam giác AOM theo định lý đồng dạng tam giác góc-góc.
Ta có ∠MAS = ∠ACS = 90° và ∠AMO = ∠CAO (vì tứ giác MAOB nội tiếp)
Suy ra, tam giác MAS đồng dạng tam giác AOC theo định lý đồng dạng tam giác góc-góc.
Vì vậy, tam giác MAS cân tại A.

c) Ta có ∠CBA = ∠COA (vì tứ giác MAOB nội tiếp)
Và ∠COA = ∠DOE (vì EC là đường kính của (O))
Và ∠DOE = ∠NDE (vì DE // ON)
Suy ra, ∠CBA = ∠NDE.

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó; ΔBAC vuông tại A

=>BA\(\perp\)AC

mà BA//OK

nên OK\(\perp\)AC 

Ta có: ΔOAC cân tại O

mà OK là đường cao

nên OK là phân giác của góc AOC

Xét ΔOCI và ΔOAI có

OC=OA

\(\widehat{COI}=\widehat{AOI}\)

OI chung

Do đó: ΔOCI=ΔOAI

=>\(\widehat{OAI}=\widehat{OCI}=90^0\)

=>IA là tiếp tuyến của (O)

b: Ta có: \(\widehat{ICK}+\widehat{OCK}=90^0\)

\(\widehat{ACK}+\widehat{OKC}=90^0\)(KO\(\perp\)AC)

mà \(\widehat{OCK}=\widehat{OKC}\)(OK=OC)

nên \(\widehat{ICK}=\widehat{ACK}\)

=>CK là phân giác của góc ACI

AH
Akai Haruma
Giáo viên
14 tháng 4

Lời giải:

a. Xét tứ giác $AHBC$ có $\widehat{BHC}=\widehat{BAC}=90^0$ và cùng nhìn cạnh $BC$ nên $AHBC$ là tứ giác nội tiếp.

b.

Do $AHBC$ là tứ giác nội tiếp nên:

$\widehat{EHA}=\widehat{ACB}=45^0$ (do $ABC$ là tam giác vuông cân tại $A$)

c.

Xét tam giác $EAH$ và $EBC$ có:

$\widehat{E}$ chung

$\widehat{EHA}=\widehat{ACB}=\widehat{ECB}$ (cmt)

$\Rightarrow \triangle EAH\sim \triangle EBC$ (g.g)

d.

Xét tứ giác $ADHE$ có tổng hai góc đối $\widehat{EHD}+\widehat{DAE}=90^0+90^0=180^0$

$\Rightarrow ADHE$ là tứ giác nội tiếp

$\Rightarrow \widehat{EDA}=\widehat{EHA}=45^0$

Tam giác $EDA$ có $\widehat{A}=90^0$ và $\widehat{D}=45^0$ nên $EDA$ là tam giác vuông cân tại $A$

$\Rightarrow AD=AE$

14 tháng 4

a. Ta có ∠HAB = ∠HCB (cùng chắn cung HB) và ∠HBA = ∠HCA (cùng chắn cung HA). Do đó, tứ giác AHBC nội tiếp.

b. Góc AHE = 90° - ∠AEB = 90° - ∠ACB = ∠ABC = 45° (vì tam giác ABC vuông cân tại A).

c. Ta có ∠EHA = ∠EBC (cùng chắn cung EB) và ∠EAH = ∠EBA = ∠EBC (vì tam giác ABC vuông cân tại A). Do đó, tam giác EAH và EBC đồng dạng.

d. Vì tam giác EAH và EBC đồng dạng nên EA/EB = AH/BC. Nhưng AH = BC (vì tam giác ABC vuông cân tại A) nên EA = EB. Mà AB = AE + EB = 2EA. Do đó, AD = AB/2 = EA = AE.