Chứng minh rằng:
\(x\left(\frac{1}{2}-x\right)\le\frac{1}{16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Chứng minh (a + b)2 = (a – b)2 + 4ab
Ta có:
VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab
= a2 + (4ab – 2ab) + b2
= a2 + 2ab + b2
= (a + b)2 = VT (đpcm)
+ Chứng minh (a – b)2 = (a + b)2 – 4ab
Ta có:
VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab
= a2 + (2ab – 4ab) + b2
= a2 – 2ab + b2
= (a – b)2 = VT (đpcm)
+ Áp dụng, tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.
( a + b )2 = ( a - b )2 + 4ab
Xét VP : ( a - b)2 - 4ab = a2 - 2ab + b2 + 4ab
= a2 + 2ab + b2 = ( a + b )2
= VT
⇒⇒đpcm
( a - b)2 = ( a + b )2 - 4ab
Xét VP: a2 + 2ab + b2 -4ab
= a2 - 2ab + b2 = ( a - b)2
= VT
⇒⇒đpcm
a) x2y - xy2 - 5x + 5y = xy(x - y) - 5(x - y) = (xy - 5)(x - y)
b) x2 + 8x - y2 + 16 = (x2 + 8x + 16) - y2 = (x + 4)2 - y2 = (x + y + 4)(x - y + 4)
c) x2 - 7x + 10 = x2 - 2x - 5x + 10 = x(x - 2) - 5(x - 2) = (x - 5)(x - 2)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng, cấu trúc, không gian, và sự thay đổi. Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học. Các nhà toán học tìm kiếm các mô thức và sử dụng chúng để tạo ra những giả thuyết mới
`a,`
`(x+y+z)^2=[(x+y)+z]^2 =(x+y)^2 +2 (x+y)z +z^2 = x^2 +y^2 +z^2 +2xy+ 2yz +2zx` (Bằng VP)
`->` Đpcm
`b,`
`(x-y-z)^2=[(x-y)-z]^2=(x-y)^2 - 2 (x-y)z +z^2 = x^2 + y^2 +z^2 -2xy - 2zx -2yz` (Bằng VP)
`->` Đpcm
1) \(2x\left(x-5\right)+\left(x-2\right)\left(x+3\right)=2x^2-10x+x^2+3x-2x-6=3x^2-9x-6\)
2) \(\left(2x-5\right)\left(1-x\right)-\left(x-3\right)\left(-2x\right)=2x-2x^2-5+5x+2x^2-6x=x-5\)
3) \(\left(4x-3\right)\left(4x-3\right)-\left(3x+2\right)\left(3x-2\right)=\left(4x-3\right)^2-9x^2+4=16x^2-24x+9-9x^2+4\)
\(=7x^2-24x+13\)
4) \(\left(2x-1\right)\left(2x+1\right)\left(2x+1\right)-4\left(x^2+1\right)=\left(2x-1\right)[\left(2x+1\right)^2]-4x^2-4\)
\(=\left(2x-1\right)\left(4x^2+4x+4\right)-4x^2-4=8x^3+8x^2+8x-4x^2-4x-4-4x^2-4=8x^3+4x-8\)
5) \(3x\left(2x-8\right)-\left(2-6x\right)\left(5+x\right)=6x^2-24x-10-2x+30x+6x^2=12x^2+4x-10\)
6) \(x\left(3x-18\right)-3\left(x-4\right)\left(x-2\right)+8=3x^2-18x-3x^2+6x+12x-24+8=-16\)
7) \(\left(x+2\right)\left(x^2-2x+4\right)-x^2\left(x-2\right)-2x^2=x^3+8-x^3+2x^2-2x^2=8\)
\(M=4x-x^2+3\\ =-(x^2-4x-3)\\ =-(x^2-4x+4)+7\\ =-(x+2)^2+7 \leq7,\forall x\in \mathbb{R}\quad (\mathrm{vì}-(x+2)^2\leq0)\)
Dấu bằng xảy ra khi và chỉ khi \(-(x+2)^2=0\Leftrightarrow x+2=0 \Leftrightarrow x=-2\).
Vậy \(\mathrm{Max}M=7\Leftrightarrow x=-2\).