1/555 + 1/678 = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}\)
\(\dots\)
\(\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\)
Suy ra: \(A=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dots+\dfrac{1}{100^2}\)
\(< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dots+\dfrac{1}{99\cdot100}\)
\(=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dots+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=2-\dfrac{1}{100}< 2\)
Vậy \(A< 2\)
Do x + 2 là ước của 2x - 1 nên (2x - 1) ⋮ (x + 2)
Ta có:
2x - 1 = 2x + 4 - 5 = 2(x + 2) - 5
Để (2x - 1) ⋮ (x + 2) thì 5 ⋮ (x + 2)
⇒ x + 2 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ x ∈ {-7; -3; -1; 3}
\(\dfrac{5}{6}+\dfrac{11}{12}+\dfrac{19}{20}+\dfrac{29}{30}+\dfrac{41}{42}+\dfrac{55}{56}+\dfrac{71}{72}+\dfrac{89}{90}\)
\(=\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+\left(1-\dfrac{1}{20}\right)+\left(1-\dfrac{1}{30}\right)+\left(1-\dfrac{1}{42}\right)+\left(1-\dfrac{1}{56}\right)+\left(1-\dfrac{1}{72}\right)+\left(1-\dfrac{1}{90}\right)\)
\(=8-\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=8-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\)
\(=8-\left(\dfrac{3-2}{2\cdot3}+\dfrac{4-3}{3\cdot4}+\dfrac{5-4}{4\cdot5}+\dfrac{6-5}{5\cdot6}+\dfrac{7-6}{6\cdot7}+\dfrac{8-7}{7\cdot8}+\dfrac{9-8}{8\cdot9}+\dfrac{10-9}{9\cdot10}\right)\)
\(=8-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=8-\left(\dfrac{1}{2}-\dfrac{1}{10}\right)\)
\(=8-\dfrac{4}{10}\)
\(=\dfrac{80}{10}-\dfrac{4}{10}=\dfrac{76}{10}=\dfrac{38}{5}\)
Ta có công thức tổng quát của dãy số:
\(1\cdot2+2\cdot3+3\cdot4+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
Trong đề bài ta có dãy số: \(1\cdot2+2\cdot3+...+99\cdot100\) có \(n=99\)
\(\Rightarrow1\cdot2+2\cdot3+...+99\cdot100=\dfrac{99\cdot\left(99+1\right)\cdot\left(99+2\right)}{3}=333300\)
Trở lại để bài:
\(\dfrac{1\cdot2+2\cdot3+3\cdot4+...+99\cdot100}{x^2+\left(x^2+1\right)+\left(x^2+2\right)+...+\left(x^2+99\right)}=50\dfrac{116}{131}\)
\(\Rightarrow\dfrac{333300}{x^2+x^2+1+x^2+2+...+x^2+99}=\dfrac{6666}{131}\)
\(\Rightarrow\dfrac{333300}{\left(x^2+x^2+...+x^2\right)+\left(1+2+3+...+99\right)}=\dfrac{6666}{131}\)
\(\Rightarrow\dfrac{333300}{100x^2+4950}=\dfrac{6666}{131}\)
\(\Rightarrow6666\left(100x^2+4950\right)=333300\cdot131\)
\(\Rightarrow666600x^2+32996700=43662300\)
\(\Rightarrow666600x^2=10665600\)
\(\Rightarrow x^2=\dfrac{10665600}{666600}\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow x=\pm4\)
Ta có: 1+2-3-4+5+6-7-8+9+...+994-995-996+997+998
= (1-3+5-7+...+993-995+997) + (2-4+6-8+...994-996+998)
= (-2-2-2-2...-2+997) + (-2-2-2...-2)
= 499 + 500
= 999
Ta sử dụng phương pháp đánh giá
\(\left(x-1\right)^2+5y^2=6\)
\(\Rightarrow\left(x-1\right)^2=6-5y^2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow6-5y^2\ge0\forall y\) (vế trái luôn lớn hơn hoặc bằng 0 thì vế phải cũng vậy)
\(\Rightarrow5y^2\le6\)
\(\Rightarrow y^2\le1,2\)
Do \(y^2\) là một số nguyên bình phương nên \(\Rightarrow y^2\in\left\{1;0\right\}\Rightarrow y\in\left\{0;1;-1\right\}\)
Thay \(y=0\) vào ta có: \(\left(x-1\right)^2+5\cdot0^2=6\Rightarrow\left(x-1\right)^2=6\) (x không có giá trị nguyên)
Thay \(y=1\) vào ta có: \(\left(x-1\right)^2+5\cdot1^2=6\Rightarrow\left(x-1\right)^2=1\)
TH1: \(x-1=1\Rightarrow x=2\)
TH2: \(x-1=-1\Rightarrow x=0\)
Thay \(y=-1\) vào ta có: \(\left(x-1\right)^2+5\cdot\left(-1\right)^2=6\Rightarrow\left(x-1\right)^2=1\)
TH1: \(x=2\)
TH2: \(x=0\)
Vậy: \(\left(x;y\right)=\left\{\left(2;1\right);\left(0;1\right);\left(2;-1\right);\left(0;-1\right)\right\}\)
(\(x\) - 1)2 + 5y2 = 6 Vì 5y2≥ 0 ⇒ (\(x-1\))2 ≤ 6 - 0 = 6
⇒ \(\left[{}\begin{matrix}\left(x-1\right)^2=0;y^2=\dfrac{6}{5}\left(ktm\right)\\\left(x-1\right)^2=1;y^2=\dfrac{6-1}{5}=1\\\left(x-1\right)^2=4;y^2=\dfrac{6-4}{5}=\dfrac{2}{5}\left(ktm\right)\end{matrix}\right.\)
Lập bảng ta có:
(\(x-1\))2 | 1 | 1 |
\(x-1\) | -1 | 1 |
\(x\) | 0 | 2 |
y2 | 1 | 1 |
y | -1; 1 | -1; 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (0; 1); (2; -1); (2; 1)
a) \(2x-\dfrac{2}{11}=1\dfrac{1}{5}\)
\(\Rightarrow2x=\dfrac{6}{5}+\dfrac{2}{11}\)
\(\Rightarrow2x=\dfrac{76}{55}\)
\(\Rightarrow x=\dfrac{76}{55}:2\)
\(\Rightarrow x=\dfrac{38}{55}\)
b) \(\dfrac{5}{9}+\dfrac{4}{3}x=\dfrac{-1}{3}\)
\(\Rightarrow\dfrac{4}{3}x=\dfrac{-1}{3}-\dfrac{5}{9}\)
\(\Rightarrow\dfrac{4}{3}x=-\dfrac{8}{9}\)
\(\Rightarrow x=-\dfrac{8}{9}:\dfrac{4}{3}\)
\(\Rightarrow x=-\dfrac{2}{3}\)
c) \(\dfrac{-3}{7}-\dfrac{3}{5}x=\dfrac{4}{5}+\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{-3}{7}-\dfrac{3}{5}x=\dfrac{2}{15}\)
\(\Rightarrow\dfrac{3}{5}x=-\dfrac{3}{7}-\dfrac{2}{15}\)
\(\Rightarrow\dfrac{3}{5}x=\dfrac{-59}{105}\)
\(\Rightarrow x=\dfrac{-59}{105}:\dfrac{3}{5}\)
\(\Rightarrow x=-\dfrac{59}{63}\)
d) \(\dfrac{3x}{8}=\dfrac{-6}{15}\cdot\dfrac{5}{14}\)
\(\Rightarrow\dfrac{3x}{8}=\dfrac{-3}{7}\)
\(\Rightarrow8\cdot\dfrac{3x}{8}=8\cdot\dfrac{-3}{7}\)
\(\Rightarrow3x=-\dfrac{24}{7}\)
\(\Rightarrow x=\dfrac{-24}{7}:3\)
\(\Rightarrow x=-\dfrac{8}{7}\)
Lời giải:
\(A=\frac{5(4n+3)-2}{4n+3}=5-\frac{2}{4n+3}\)
Để $A$ có giá trị nhỏ nhất thì $\frac{2}{4n+3}$ có GTLN
$\Rightarrow 4n+3$ phải nhỏ nhất và $4n+3>0$
Tức là $4n+3$ có giá trị nguyên dương nhỏ nhất.
Với $n$ nguyên, $4n+3$ chia 4 dư 3 nên $4n+3$ nguyên dương nhỏ nhất bằng $3$
$\Rightarrow n=0$
Vậy $A_{\min}=\frac{13}{3}$ khi $n=0$.
\(\dfrac{1}{555}+\dfrac{1}{678}\)
\(=\dfrac{678}{376290}+\dfrac{555}{376290}\)
\(=\dfrac{1233}{376290}=\dfrac{411}{125430}=\dfrac{137}{41810}\)
Ta có:
\(\dfrac{1}{555}\)+\(\dfrac{1}{678}\)
=\(\dfrac{678}{376290}\)+\(\dfrac{555}{376290}\)
=\(\dfrac{678+555}{376290}\)
=\(\dfrac{1233}{376290}\)
=\(\dfrac{137}{41810}\)