Tìm x, y biết \(\hept{\begin{cases}x^2+y^2=11\\x+xy+y=3+4\sqrt{2}\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Áp dụng bất đẳng thức Bunhiacopxki ta được:
\(\frac{a^2}{a+9bca+4a\left(b-c\right)^2}+\frac{b^2}{b+9cab+4b\left(c-a\right)^2}+\frac{c^2}{c+9abc+4c\left(a-b\right)^2}\) \(\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)+9abc+9abc+9abc+4a\left(b-c\right)^2+4b\left(c-a\right)^2+4c\left(a-b\right)^2}\) \(=\frac{1}{1+27abc+4\left(ab^2+ac^2-2abc+bc^2+ba^2-2abc+ca^2+cb^2-2abc\right)}\) \(=\frac{1}{1+3abc+4\left(ab^2+a^2b+b^2c+c^2b+ac^2+c^2a\right)}\)
Do đó ta cần chứng minh \(1+3abc+4.\) (\(a^2b+ab^2+b^2c+bc^2+ca^2+c^2a\) ) \(\le2\)
\(\Leftrightarrow3abc+4\) (\(a^2b+b^2a+b^2c+bc^2+c^2a+ca^2\) )\(\le1=\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow a^3+b^3+c^3+3abc\ge a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
\(\Leftrightarrow a\left(a-b\right)\left(a-c\right)+b\left(b-c\right)\left(b-a\right)+c\left(c-a\right)\left(c-b\right)\ge0\) (đúng do bất đẳng thức Schur).
Dấu "=" xảy ra khi \(a=b=c>0\) .
Dấu "=" xảy ra

A = (a + b + 1)(a2 + b2) + \(\frac{4}{a+b}\)
\(\ge\left(a+b+1\right)2ab+\frac{4}{a+b}=2\left(a+b+1\right)+\frac{4}{a+b}\)(Vì a2 + b2 \(\ge\)2ab )
\(=\left[\left(a+b\right)+\frac{4}{a+b}\right]+2+\left(a+b\right)\ge2\sqrt{\left(a+b\right).\frac{4}{a+b}}+2+2.\sqrt{ab}=8\)(BĐT Cauchy)
Dấu "=" xảy ra <=> a = b = 1(tmđk)
Vậy Min A = 8 <=> a = b = 1

Ta có :
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=2\) ( BĐT Bunhiacopxki )
Vậy \(-\sqrt{2}\le x+y\le\sqrt{2}\)

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

a, Vì CA = CM ( tc tiếp tuyến cắt nhau )
OA = OM = R
=> OC là đường trung trực đoạn AM
=> OC vuông AM
^AMB = 900 ( góc nội tiếp chắn nửa đường tròn )
=> AM vuông MB (1)
Ta có : DM = DB ( tc tiếp tuyến cắt nhau )
OM = OB = R
=> OD là đường trung trực đoạn MB
=> OD vuông MB (2)
Từ (1) ; (2) => OD // AM
b, OD giao MB = {T}
OC giao AM = {U}
Xét tứ giác OUMT có ^OUM = ^UMT = ^MTO = 900
=> tứ giác OUMT là hcn => ^UOT = 900
Vì CD là tiếp tuyến (O) với M là tiếp điểm => ^OMD = 900
Mặt khác : BD = DM ( tc tiếp tuyến cắt nhau )
CM = AC ( tc tiếp tuyến cắt nhau )
Xét tam giác COD vuông tại O, đường cao OM
Ta có : \(OM^2=CM.MD\)hay \(OM^2=AC.BD\)=> R^2 = AC.BD
c, Gọi I là trung điểm CD
O là trung điểm AB
khi đó OI là đường trung bình hình thang BDAC
=> OI // AC mà AC vuông AB ( tc tiếp tuyến ) => OI vuông AB
Xét tam giác COD vuông tại O, I là trung điểm => OI = IC = ID = R
Vậy AB là tiếp tuyến đường tròn (I;CD/2)

Gọi cái biểu thức đó là P nha
Trước tiên chứng minh:
\(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}-\left(\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\right)=0\)
\(\Leftrightarrow\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\Leftrightarrow x-y+y-z+z-x=0\)( đúng )
Giờ ta quay lại bài toán ban đầu
Ta có:
\(\Leftrightarrow2P=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{x^2+y^2}{2\left(x+y\right)}+\frac{y^2+z^2}{2\left(y+z\right)}+\frac{z^2+x^2}{2\left(z+x\right)}\)
\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)
\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)
\(\Rightarrow P\ge\frac{1}{4}\)
Bạn đang viết linh tinh đúng ko?
\(x+xy+y=3+4\sqrt{2}\)
\(\Rightarrow2x+2xy+2y=6+8\sqrt{2}\)
Ta có : \(x^2+y^2+2x+2xy+2y=11+6+8\sqrt{2}\)
\(\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1=18 +8\sqrt{2}\)
\(\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)+1=18+8\sqrt{2}\)
\(\Leftrightarrow\left(x+y+1\right)^2=\left(3+\sqrt{2}+1\right)^2\)
\(\Rightarrow\left(x,y\right)=\left(3,\sqrt{2}\right)\)