Tìm số a với a là số nguyên dương, biết 4/a < a/11 < 5/a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: tìm lỗi sai
1. She goes to visit her grandmother and grandfather next week
=> will go
2. Which place is Phuong and Mai going to visit firts?
=> are
3. They are going in vacation this summer
=> on
4. He wants visit the temple and take some photos
=> to visit
5. They always are going to have a picnic in the park on the weekend
=> \(\varnothing\)
6. It is on of the higher mountains in the world
=> highest
7. This city has a population for 6.3 milion
=> of
8. She always go to Hong Kong on summer vacation
=> goes
9. The River Nile is 6,437 kilometers length
=> long
10. Tomorrow, I am going to visiting the Tower of LonDon
=> am going to visit
a) \(\frac{1}{2}x+\frac{3}{5}\left(x-2\right)=3\)
0,5 x + 0,6 ( x - 2 ) = 3
0,5 x + 0.6 x - 1,2 = 3
1,1 x = 4,2
x = \(\frac{42}{11}\)
Kết luận:
b) \(\frac{1}{3}x-0,5x=0,75\)
\(\frac{1}{3}x-\frac{1}{2}x=\frac{3}{4}\)
\(-\frac{1}{6}x=\frac{3}{4}\)
\(x=-\frac{9}{2}\)
Kết luận:
c) \(\frac{3}{-2}x-0,5x=75\%\)
-1,5x - 0,5x = 0,75
-2x = 0,75
x = -0,375
Kết luận:
d) \(-\frac{2}{5}x+\frac{1}{4}=75\%-\frac{3}{4}x\)
-0,4 x + 0,25 = 0,75 - 0,75 x
-0,4 x + 0,75 x = 0,75 - 0,25
0,35 x = 0,5
x = \(\frac{10}{7}\)
Kết luận:
\(a,\frac{1}{2}x+\frac{3}{5}\left(x-2\right)=3\)
\(\frac{1}{2}x+\frac{3}{5}x-\frac{6}{5}=3\)
\(\left(\frac{1}{2}+\frac{3}{5}\right)x-\frac{6}{5}=3\)
\(\frac{11}{10}x-\frac{6}{5}=3\)
\(\frac{11}{10}x=\frac{21}{5}\)
\(x=\frac{42}{11}\)
\(b,\frac{1}{3}x-\frac{1}{2}x=\frac{3}{4}\)
\(\left(\frac{1}{3}-\frac{1}{2}\right)x=\frac{3}{4}\)
\(\frac{-1}{6}x=\frac{3}{4}\)
\(x=\frac{-9}{2}\)
\(c,\frac{3}{-2}x-\frac{1}{2}x=75\%\)
\(\left(\frac{3}{-2}-\frac{1}{2}\right)x=\frac{3}{4}\)
\(-2x=\frac{3}{4}\)
\(x=\frac{-3}{8}\)
\(\frac{-2}{5}x+\frac{1}{4}=75\%-\frac{3}{4}x\)
\(\frac{-2}{5}x+\frac{3}{4}x=\frac{3}{4}-\frac{1}{4}\)
\(\left(\frac{-2}{5}+\frac{3}{4}\right)x=\frac{1}{2}\)
\(\frac{7}{20}x=\frac{1}{2}\)
\(x=\frac{10}{7}\)
\(A=\frac{23n+1}{n-2}=\frac{23n-46+46+1}{n-2}=\frac{23\left(n-2\right)+47}{n-2}=23+\frac{47}{n-2}\)
A là số nguyên <=> \(\frac{47}{n-2}\) là số nguyên <=> \(47⋮n-2\) hay \(n-2\inƯ\left(47\right)=\left\{-47;-1;1;47\right\}\)
<=> \(n\in\left\{-45;1;3;49\right\}\)
Kết luận:...
\(A=\frac{23n+1}{n-2}=\frac{23\left(n-2\right)+47}{n-2}=23+\frac{47}{n-2}\)
A nguyên <=> \(\frac{47}{n-2}\)nguyên
=> \(47⋮n-2\)=> \(n-2\inƯ\left(47\right)=\left\{\pm1;\pm47\right\}\)
n-2 | 1 | -1 | 47 | -47 |
n | 3 | 1 | 49 | -45 |