K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

n lẻ nên n^3 lẻ. vậy n^3+1 chẵn. mà số chính phương chỉ có 2 là chẵn, còn lại lẻ ->đpcm

3 tháng 2 2017

n có dạng 2k+1
n3+1 = (2k+1)3+1 = 8k3+12k2+6k+1+1=8k3+12k2+6k+2
Vì 8k3;6k và 2 không thể là số chính phương nên suy ra n3+1 không là số chính phương khi n lẻ.

3 tháng 2 2017

A B C D d O B' A' D' C' E F

Kẻ \(AA';BB';CC'⊥d\); ta có  AA' // BB' // CC'.

Có AA' // BB' \(\Rightarrow\frac{BE}{AE}=\frac{BB'}{AA'}\)( Định lý Ta-lét )

Tương tự; lại có \(\frac{CF}{AF}=\frac{CC'}{AA'}\)

\(\Rightarrow\frac{BE}{AE}+\frac{CF}{AF}=\frac{BB'}{AA'}+\frac{CC'}{AA'}=1\)

\(\Rightarrow\frac{BB'+CC'}{AA'}=1\)

\(\Rightarrow AA'=BB'+CC'\)

Xét hình thang BB'C'C có DD' // BB' // CC' và D là trung điểm BC nên DD' là đường trung bình hình thang.

\(\Rightarrow DD'=\frac{BB'+CC'}{2}=\frac{AA'}{2}\)

\(\Rightarrow\frac{AA'}{DD'}=2\)

Có AA' // DD' nên \(\frac{AA'}{DD'}=\frac{AO}{OD}=2\)

Suy ra O là trọng tâm tam giác ABC.

Vậy ...

3 tháng 2 2017

Đề không rõ ràng.

F thuộc đường thẳng đi qua D thì đường thẳng chứ F không thể song song với  EF.

3 tháng 2 2017

1, Tính BC :

Áp dụng định lý Pi-ta-go :

AB^2+AC^2=BC^2

5^2+12^2=x^2

x^2=169

x=13cm

Tính AH :

Ta thấy AH=1/2BC

=> AH=1/2.BC

x=1/2.13

x=6,5cm

\(-\frac{x^2+5}{x^2+2x+1}+\frac{x-5}{x^2+2x+1}\)

\(=\frac{-x^2+5+x-5}{x^2+2x+1}\)\(=\frac{-x^2-x}{\left(x+1\right)^2}\)\(=\frac{-x\left(x+1\right)}{\left(x+1\right)^2}=-\frac{x}{x+1}\)

3 tháng 2 2017

-x^2+5/(x^2+2x+1)+(x-5)/(x^2+2x+1)

=-x^2+5+x-5/(x+1)^2

=-x(x+1)/(x+1)^2

=-x/x+1

\(\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x+x+1}{x+1}\right):\left(\frac{2x+1}{x^2+x+1}\right)\)

\(=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(1^2+x+x^2\right)}.\frac{x\left(x+1\right)}{\left(x+1\right)}\right):\left(\frac{2x+1}{x^2+x+1}\right)\)

3 tháng 2 2017

 D=[1/(x-1)-x/(1-x^3).(x^2+x+1)/(x+1)]:[(2x+1)/(x^2+x+1)]

=[1/(x-1)+x/(x-1)(x^2+x+1).(x^2+x+1)/(x+1)]:[(2x+1)/(x^2+x+1)]

=[1/(x-1)+x/(x-1)(x+1)]:[(2x+1)/(x^2+x+1)]

=(x+1+x)/(x-1)(x+1) . x(x+1)+1/2x+1

=2x+1/(x-1)(x+1)  .  x(x+1)+1/2x+1

=x+1/x-1

\(a.x^4+x^3+x+1=0\)

\(\Leftrightarrow\left(x^4+x^3\right)+\left(x+1\right)=0\)

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\x^3+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=-1\end{cases}}\). Vậy \(x=-1\)

\(b.x^4-x^2+2x+2=0\)

\(\Leftrightarrow\left(x^4-x^2\right)+\left(2x+2\right)=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow x^2\left(x+1\right)\left(x-1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2+x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\2x^2+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\loại\end{cases}}\)

Vậy \(x=-1\)

3 tháng 2 2017

\(x^4+x^3+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2-x+1\right)=0\)

Mà \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy PT có TN \(S=\left\{-1\right\}.\)

Giả sử n=1

1x2x3x4=24

mà 24 ko là số chính phương

=>A = n(n+1)(n+2)(n+3) ko là số chính phương với mọi số m khác 0

mình là lớp 6 đó