Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(=\left(2x-y\right)((2x)^2+2xy+y^2-\left(2x+y\right)((2x)^2-2xy+y^2\)
\(=[\left(2x\right)^3-y^3]-[\left(2x\right)^3+y^3]\)
\(=\left(2x\right)^3-y^3-\left(2x\right)^3+y^3\)
\(=-2y^3\)
\(H=\frac{-1}{3}x^2-5x+1\)
\(=\frac{-1}{3}\left(x^2+15x-3\right)\)
\(=\frac{-1}{3}\left(x^2+2x.\frac{15}{2}+\frac{225}{4}-\frac{237}{4}\right)\)
\(=\frac{-1}{3}\left(x+\frac{15}{2}\right)^2+\frac{79}{4}\le\frac{79}{4}\forall x\)
Dấu '' = '' xảy ra khi: \(\left(x+\frac{15}{2}\right)^2=0\Rightarrow x+\frac{15}{2}=0\Rightarrow x=\frac{-15}{2}\)
Vậy \(MaxH=\frac{79}{4}\) khi \(x=\frac{-15}{2}\)
\(L=-3x^2+6x-y^2+6y-12\)
\(=\left(-3x^2+6x-3\right)+\left(-y^2+6y-9\right)\)
\(=-3\left(x^2-2x+1\right)-\left(y^2-6y+9\right)\)
\(=-3\left(x-1\right)^2-\left(y-3\right)^2\le0\forall x;y\)
Dấu '' = '' xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\\\left(y-3\right)^2=0\Rightarrow y-3=0\Rightarrow y=3\end{cases}}\)
Vậy \(MaxL=0\) khi \(\hept{\begin{cases}x=1\\y=3\end{cases}}\)
a) ĐKXĐ : \(\hept{\begin{cases}a\ne0\\a\ne-1\\a\ne1\end{cases}}\)
Khi đó P = \(\left[\frac{2}{3a}-\frac{2}{a+1}\left(\frac{a+1}{3a}-a-1\right)\right]:\frac{a-1}{a}\)
\(=\left[\frac{2}{3a}-\frac{2}{a+1}.\frac{a+1}{3a}+\frac{2}{a+1}.\left(a+1\right)\right]:\frac{a-1}{a}\)
\(=\left(\frac{2}{3a}-\frac{2}{3a}+2\right):\frac{a-1}{a}=2:\frac{a-1}{a}=\frac{2a}{a-1}\)
b) Ta có P = \(\frac{2a}{a-1}=\frac{2a-2+2}{a-1}=2+\frac{2}{a-1}\)
\(P\inℤ\Leftrightarrow2⋮a-1\Leftrightarrow a-1\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
<=> \(a\in\left\{2;3;0;-1\right\}\)
c) Để P \(\le1\)
<=> \(\frac{2a}{a-1}\le1\)
<=> \(\frac{a+1}{a-1}\le0\)
Xét 2 trường hợp
TH1 : \(\hept{\begin{cases}a+1\ge0\\a-1\le0\end{cases}}\Leftrightarrow-1\le a\le1\)
Kết hợp điều kiện => -1 < a < 1 (a \(\ne0\))
TH2 : \(\hept{\begin{cases}a+1\le0\\a-1\ge0\end{cases}}\Leftrightarrow a\in\varnothing\)
Vậy - 1 < a < 1 (a \(\ne0\))
\(\left(-\frac{1}{3}ab^3-2a^3b\right)^3\)
\(=\left(-\frac{1}{3}ab^3\right)-3\left(-\frac{1}{3}ab^3\right)^2.2a^3b+3\left(-\frac{1}{3}ab^3\right)\left(2a^3b\right)^2-\left(2a^3b\right)^3\)
\(=-\frac{1}{27}a^3b^9+\frac{2}{3}a^5b^7-4a^7b^5-8a^9b^3\)