Cho tam giác ABC nhọn ,đường cao BD,CE cắt nhau tại H . Gọi M,N là hai điểm thuộc HB,HC sao cho góc AMC=góc ANB=90dộ
a, CM ; AB.AE=AC.AD b; cm tam giác AMN là tam giác cân
giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) khỏi bàn
b) Ta có: \(\widehat{DOK}=\widehat{DEK}\left(=\frac{1}{2}sđ\widebat{DK}\right)\left(1\right)\)
\(\widehat{DEK}=\widehat{DBC}=\left(\frac{1}{2}sđ\widebat{DC}\right)\left(2\right)\)
Mà OD=OB \(\Rightarrow\Delta ODB\)cân tại O
\(\Rightarrow\widehat{DBC}=\widehat{BDO}\left(3\right)\)
Từ (1), (2) và (3) \(\Rightarrow\widehat{DOK}=\widehat{BDO}\)Mà 2 góc này ở vị trí so le trong
\(\Rightarrow OK//DB\)
Xét tam giác CBH có: OK//CH ; O là trung điểm của BC
=> K là trung điểm của CH
c từ từ nha chiều làm sau
Đặt \(A=\sqrt{7+4\sqrt{3}}=\sqrt{7+2.2\sqrt{3}}\)
\(=\sqrt{4+2.2\sqrt{3}+3}=\sqrt{\left(2+\sqrt{3}\right)^2}=\left|2+\sqrt{3}\right|=2+\sqrt{3}\)
Đặt \(B=\sqrt{4+\sqrt{15}}\)
\(\sqrt{2}B=\sqrt{8+2\sqrt{15}}=\sqrt{8+2\sqrt{5}\sqrt{3}}\)
\(=\sqrt{5+2\sqrt{5}\sqrt{3}+3}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\left|\sqrt{5}+\sqrt{3}\right|\)
\(=\sqrt{5}+\sqrt{3}\Rightarrow B=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{10}+\sqrt{6}}{2}\)
a) Δ AHC ~ Δ CAB (g.g)
vì: \(\hept{\begin{cases}\widehat{C}:chung\\\widehat{AHC}=\widehat{BAC}=90^0\end{cases}}\)
=> \(\frac{HC}{AC}=\frac{AC}{BC}\Leftrightarrow HC\cdot BC=AC^2\Rightarrow b^2=ab'\)
b) Δ AHB ~ Δ CHA (g.g)
vì: \(\hept{\begin{cases}\widehat{ACH}=\widehat{BAH}=\left(90^0-\widehat{HAC}\right)\\\widehat{AHC}=\widehat{AHB}=90^0\end{cases}}\)
=> \(\frac{BH}{AH}=\frac{AH}{HC}\Leftrightarrow AH^2=HB\cdot HC\Rightarrow h^2=b'c'\)
c) \(S_{ABC}=\frac{1}{2}AH\cdot BC=\frac{1}{2}AB\cdot AC\)
\(\Rightarrow AH\cdot BC=AB\cdot AC\Rightarrow ah=bc\)
d) \(\frac{1}{b^2}+\frac{1}{c^2}=\frac{b^2+c^2}{b^2c^2}=\frac{a^2}{a^2h^2}=\frac{1}{h^2}\) (theo c)
chị lớp 9 em có lớp 7 thui em k biết nha
đề là rút gọn hả bạn:
\(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(\frac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(1:x< 0\left(B\right)\)
\(2:\left(D\right)\)
\(3:x< 2021\left(C\right)\)
\(4:x\ge15\left(D\right)\)
\(5:\)để pt có nghĩa thì 2x-5>0
\(2x>5< =>x>\frac{5}{2}\)
chọn (C)
\(6:\frac{1}{2}\sqrt{20}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(\frac{1}{2}\sqrt{20}-\sqrt{5}+2\)
\(\sqrt{5}-\sqrt{5}+2=2\)
chọn (B)
\(7:\frac{6xy^2}{x^2-y^2}\sqrt{\frac{\left(x-y\right)^2}{\left(3xy^2\right)^2}}\)
\(\frac{6xy^2}{x^2-y^2}\frac{x-y}{3xy^2}\)
\(\frac{2}{x+y}\)
chọn (B)
\(8:\left(1+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(\frac{3+\sqrt{3}}{\sqrt{3}+1}-1\right)\)
\(\left(1+\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right)\left(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-1\right)\)
\(\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)
\(\sqrt{3}^2-1^2=3-1=2\)
chọn (D)
\(9:M=\left|1-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)
\(M=\sqrt{3}-1+\sqrt{3}-1\)
\(M=2\sqrt{3}-2\)
chọn (A)
\(10:\sqrt{4+\sqrt{x^2-1}}=2\)
\(4+\sqrt{x^2-1}=2^2=4\)
\(\sqrt{x^2-1}=0\)
\(x^2-1=0< =>x=1\)
chọn (A)
\(\sqrt{x^2-4x+4}-\sqrt{x^2+2x+1}=-3\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-\sqrt{\left(x+1\right)^2}=-3\)
\(\Leftrightarrow\left|x-2\right|-\left|x+1\right|=-3\)(1)
Có: \(\left|x-2\right|-\left|x+1\right|=\left|x-2\right|-\left|x-2+3\right|\ge\left|x-2\right|-\left(\left|x-2\right|+3\right)=-3\)
Dấu \(=\)khi \(3\left(x-2\right)\ge0\Leftrightarrow x\ge2\).
Do đó nghiệm của (1) là \(x\ge2\).
Vậy nghiệm phương trình đã cho là \(x\ge2\).
<=>\(\sqrt{\left(x-2\right)^2}\)-\(\sqrt{\left(x+1\right)^2}=-3\)
<=>\(|x-2|-|x+1|=-3\)(1)
nếu \(\hept{\begin{cases}x-2\ge0\\x+1\ge0\end{cases}=>\hept{\begin{cases}x\ge2\\x\ge-1\end{cases}=>x\ge}2}\)
(1)<=> x-2-x-1+3=0
<=>0x=0(đúng với mọi x)
=>x\(\in\left\{x|x\ge2\right\}\)
nếu \(\hept{\begin{cases}x-2< 0\\x+1< 0\end{cases}< =>\hept{\begin{cases}x< 2\\x< -1\end{cases}< =>x< -1}}\)
(1)<=>2-x+x+1+3=0
<=>0x=-3(vô lí)
vậyphương trình đã cho có tập nghiêm là \(x\in\left\{x|x\ge2\right\}\)
\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
áp dụng bunhia - cốpxki
\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=6\left(a+b+c\right)\)
\(=6.2021=12126< =>P=\sqrt{12126}\)
vậy MAX P=\(\sqrt{12126}\)
\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(\Rightarrow P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
Áp dụng BĐT Bunyakovsky ta có:
\(P^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=6\left(a+b+c\right)=6\cdot2021\)
\(\Rightarrow P\le\sqrt{6\cdot2021}=\sqrt{12126}\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{2021}{3}\)
Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\frac{2021}{3}\)
a
\(\sqrt{3}\cdot\sqrt{75}=\sqrt{3\cdot75}=\sqrt{225}=15\)
b
\(\sqrt{72}\cdot\sqrt{18}=6\sqrt{2}\cdot3\sqrt{2}=18\cdot2=36\)
c
\(\sqrt{2,5}\cdot\sqrt{30}\cdot\sqrt{48}=\sqrt{2,5\cdot30}\cdot\sqrt{48}=\sqrt{75}\cdot\sqrt{48}=5\sqrt{3}\cdot4\sqrt{3}=20\cdot3=60\)
d
\(\sqrt{\frac{5}{49}}\cdot\sqrt{\frac{16}{125}}=\sqrt{\frac{5}{49}\cdot\frac{16}{125}}=\sqrt{\frac{16}{49\cdot25}}=\frac{4}{7\cdot5}=\frac{4}{35}\)
Do: Góc ABD = Góc ACE (= 90 - A)
=> Δ ABD ∼ Δ ACE (2 Δ vuông)
=> AD.AC = AE.AB (tỉ lệ đồng dạng)
<=> AM2 = AN2 (Hệ thức lượng trong Δ vuông)
<=> AM = AN
Hay Δ AMN cân tại A.=>....
#HT#