Cho a+b+c=9 và a2+b2+c2=53. tính ab+bc+ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\\ \Leftrightarrow x^2+6x+9-x^2+4=4x+17\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\\ \Leftrightarrow x^2+6x+9-x^2+4=4x+17\\ \Leftrightarrow x^2-x^2+6x-4x=17-4-9\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=\dfrac{4}{2}=2\)
\(D=5-8x-x^2\\ =-\left[x^2+2.x.4+16\right]+21\\ =-\left(x+4\right)^2+21\le21\forall x\in R\\ \Rightarrow max_D=21.khi.x=-4\)
\(E=4x-x^2+1\\ =-\left(x^2-2.x.2+4^2\right)+17\\ =-\left(x-2\right)^2+17\le17\forall x\in R\\ Vậy:max_E=17.khi.\left(x-2\right)=0\Leftrightarrow x=2\)
\(\left\{{}\begin{matrix}3x-6y+2z=-4\\3x-y-3z=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x-6y+2z=-4\\3x-y-3z=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x-6y=-4-2z\\3x-y=1+3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5y=1+3z+4+2z\\3x-y=1+3z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5y=5+5z\\3x=y+1+3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=1+z\\3x=1+z+1+3z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=1+z\\x=\dfrac{4z+6}{3}\end{matrix}\right.\)
\(S=9x^2-8\left(y^2+z^2\right)\)
\(S=9\left(\dfrac{4z+2}{3}\right)^2-8\left[\left(1+z\right)^2+z^2\right]\)
\(S=9.\dfrac{16z^2+16z+4}{9}-8\left[1+2z+z^2+z^2\right]\)
\(S=16z^2+16z+4-8-16z-16z^2\)
\(S=-4\)
Đính chính \(x=\dfrac{4z+2}{3}\) không phải \(x=\dfrac{4z+6}{3}\)
\(\Delta\)ABC cân tại A ⇒ \(\widehat{ABC}\) = \(\widehat{ACB}\)
\(\widehat{ABD}=\widehat{DBC}\) = \(\dfrac{1}{2}\widehat{ABC}\) (vì BD là phân giác của \(\widehat{ABC}\))
\(\widehat{ACE}\) = \(\widehat{ECB}\) = \(\dfrac{1}{2}\)\(\widehat{ACB}\) (vì CE là phân giác của \(\widehat{ACB}\))
⇒ \(\widehat{ABD}=\widehat{DBC}=\widehat{ACE}=\widehat{ECB}\) (1)
Xét \(\Delta\)BCE và \(\Delta\)CBD có:
\(\widehat{EBC}\) = \(\widehat{BCD}\) (vì tam giác ABC cân tại A)
\(\widehat{ECB}\) = \(\widehat{DBC}\) theo (1)
Và BC chung
\(\Rightarrow\) \(\Delta\)BCE = \(\Delta\) CBD (g-c-g) ⇒ BE = CD (2)
BE + EA = AD + DC (vì \(\Delta\)ABC cân tại A)
⇒ AE = AD \(\Rightarrow\) \(\dfrac{AE}{AB}\) = \(\dfrac{AD}{AC}\) \(\Rightarrow\) ED // BC (3) (định lý talet đảo)
\(\widehat{DBC}\) = \(\widehat{BDE}\) (so le trong)
⇒\(\widehat{EBD}\) = \(\widehat{BDE}\) (vì cùng bằng góc DBC)
⇒ \(\Delta\)BDE cân tại E \(\Rightarrow\) BE = ED (4)
Kết hợp (2); (3); (4) ta có
Tứ giác BECD là hình thang cân có đáy nhỏ bằng cạnh bên. (đpcm)
Bạn xem lại đề xem chứ mình thay \(n=3,4,5,6\) đều không thỏa.
Xét \(\Delta\)MPQ và \(\Delta\)PMN có:
MP chung
\(\widehat{QPM}\) = \(\widehat{PMN}\) (2 góc so le trong)
\(\widehat{QMP}\) = \(\widehat{NPM}\) (2 góc so le trong)
\(\Rightarrow\) \(\Delta\)MPQ = \(\Delta\)PMN (g-c-g)
\(\Rightarrow\) PQ = MN; MQ = PN (đpcm)
b, Xét \(\Delta\)MPQ và \(\Delta\)PMN có:
MP chung
MN = PQ
\(\widehat{QPM}\) = \(\widehat{PMN}\) ( 2 góc so le trong)
⇒\(\Delta\)MPQ = \(\Delta\)PMN ( cạnh góc cạnh)
\(\Rightarrow\) MQ = NP (đpcm)
⇒ \(\widehat{QMP}\) = \(\widehat{NPM}\)
Mà hai góc \(\widehat{QMP}\) và \(\widehat{NPM}\) ở vị trí so le trong và bằng nhau nên:
QM // NP (đpcm)
Bài 4:
a) Ta có tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc CAE + góc BAC = 90 độ, tức là EC vuông góc với BC.
b) Vì tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc BAE = góc BAC + góc CAE = 45 độ + 45 độ = 90 độ. Do đó, tứ giác ABCE là tứ giác vuông.
Bài 5:
a) Gọi K là giao điểm của đường thẳng AM và BH. Ta cần chứng minh góc BAK = góc CAK.
Vì CM = CA, ta có góc CMA = góc CAM. Vì đường thẳng AM song song với CA, nên góc CMA = góc KAB (do AB cắt đường thẳng AM tại I). Từ đó suy ra góc CAM = góc KAB.
Vì AH là đường cao, nên góc BAH = góc CAH. Từ đó suy ra góc BAK = góc CAK.
Vậy, AM là phân giác của góc BAH.
b) Ta có AB + AC = AB + AH + HC = BH + HC > BC (theo bất đẳng thức tam giác).
Vậy, luôn luôn có AB + AC < AH + BC.
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac
⇒ 2ab + 2bc + 2ac = (a + b + c)2 - (a2 + b2 + c2)
⇒ 2.(ab + bc + ac) = 92 - 53
2.(ab + bc + ac) = 81 - 53
2.(ab + bc + ac) = 28
ab + bc + ac = 28 : 2
ab + bc + ac = 14
ab + bc + cd = 14