Tìm hai số x; y biết x; y tỉ lệ nghịch với 4; 5 và x + y = 18.
x = ?
y = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt P ở trọng tâm tam giác nha. vì trọng tâm cách đều 3 đỉnh nên như thế là tiết kiệm nhất nhé
\(a)4^7:2^5\\ =\left(2^2\right)^7:2^5\\ =2^{14}:2^5\\ =2^9\\ b)3^{10}:9^3\\ =3^{10}:\left(3^2\right)^3\\ =3^{10}:3^6\\ =3^4\\ c)27^9:3^{10}\\ \left(3^3\right)^9:3^{10}\\ =3^{27}:3^{10}\\ =3^{17}\\ d)25^5:5^3\\ =\left(5^2\right)^5:5^3\\ =5^{10}:5^3\\ =5^7\\ e)36^7:6^4\\ =\left(6^2\right)^7:6^4\\ =6^{14}:6^4\\ =6^{10}\\ g)4^3\cdot8^4\\ =\left(2^2\right)^3\cdot\left(2^3\right)^4\\ =2^6\cdot3^{12}\\ =2^{18}\)
4, Ta có \(3x=7y=42z\Leftrightarrow\dfrac{3x}{21}=\dfrac{7y}{21}=\dfrac{42z}{21}\Leftrightarrow\dfrac{x}{7}=\dfrac{y}{3}=2z\)
Đặt \(\dfrac{x}{7}=\dfrac{y}{3}=2z=k\Rightarrow x=7k;y=3k\)
Ta có \(x^2+z^2=49k^2+\dfrac{k^2}{4}=\dfrac{197}{4}k^2=197\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)
Với k = 2
\(x=14;y=6;z=1\)
Với k = -2
\(x=-14;y=-6;z=-1\)
\(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+...+\dfrac{3}{87\cdot90}\)
\(=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{87}-\dfrac{1}{90}\)
\(=\dfrac{1}{4}+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+\left(\dfrac{1}{10}-\dfrac{1}{10}\right)+...+\left(\dfrac{1}{87}-\dfrac{1}{87}\right)-\dfrac{1}{90}\)
\(=\dfrac{1}{4}-\dfrac{1}{90}\)
\(=\dfrac{45}{180}-\dfrac{2}{180}\)
\(=\dfrac{43}{180}\)
Lời giải:
Áp dụng TCDTSBN:
$\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}$
$=\frac{4(3x-2y)}{16}=\frac{3(2z-4x)}{9}=\frac{2(4y-3z)}{4}$
$=\frac{4(3x-2y)+3(2z-4x)+2(4y-3z)}{16+9+4}=\frac{0}{29}=0$
$\Rightarrow 3x-2y=2z-4x=4y-3z=0$
$\Rightarrow 3x=2y; 2z=4x$
$\Rightarrow \frac{x}{2}=\frac{y}{3}; \frac{x}{2}=\frac{z}{4}$
$\Rightarrow \frac{x}{2}=\frac{y}{3}=\frac{z}{4}$
Đặt $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=t$
$\Rightarrow x=2t; y=3t; z=4t$. Khi đó:
$x+2y+3z=20$
$\Rightarrow 2t+2.3t+3.4t=20$
$\Rightarrow 2t+6t+12t=20$
$\Rightarrow 20t=20\Rightarrow t=1$
Do đó:
$x=2t=2; y=3t=3; z=4t=4$
Ta có :
\(12=2^2.3\)
\(15=3.5\)
\(=>BCNN\left(12;15\right)=3.5.2^2=3.5.4=60\)
\(=>60:12=5;60:15=4\)
\(\dfrac{5}{12}=\dfrac{5.5}{12.5}=\dfrac{25}{60}\)
\(\dfrac{8}{15}=\dfrac{8.4}{15.4}=\dfrac{32}{60}\)
Vì \(25< 32\) nên
\(=>\dfrac{25}{60}< \dfrac{32}{60}\)
\(=>\dfrac{5}{12}< \dfrac{8}{15}\)
Vậy \(\dfrac{5}{12}< \dfrac{8}{15}\)
Nếu có gì sai sót thì nhớ bảo mình , mình cảm ơn!
x;y tỉ lệ nghịch với 4;5 nên :
\(k=\dfrac{x}{4}=\dfrac{y}{5}\)
Theo TCDSTLBN ta có :
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x+y}{4+5}=\dfrac{18}{9}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=2\\\dfrac{y}{5}=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(8;10\right)\)
\(\dfrac{x}{y}=\dfrac{5}{4}\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)
ADTC dãy tỉ số bằng nhau
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{x+y}{5+4}=\dfrac{18}{9}=2\Rightarrow x=10;y=8\)