giúp em bài này em cảm ơn trc quý thầy cô giáo ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{41\cdot45}=\dfrac{29}{45}\)
=>\(x+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}=\dfrac{29}{45}\)
=>\(x+\dfrac{1}{5}-\dfrac{1}{45}=\dfrac{29}{45}\)
=>\(x+\dfrac{8}{45}=\dfrac{29}{45}\)
=>\(x=\dfrac{29-8}{45}=\dfrac{21}{45}=\dfrac{7}{15}\)
Bài 6:
Số đường thẳng là: \(4\cdot\dfrac{3}{2}=2\cdot3=6\left(đường\right)\)
Cứ 1 điểm sẽ tạo với 4 - 1 điểm còn lại 4 - 1 tia
Với 4 điểm ta sẽ tạo được số tia là:
(4 - 1) x 3 = 12 (tia)
Kết luận có 12 tia có gốc là một trong 4 điểm đã cho đó lần lượt là các tia:
EF; EG; EH; FE; FG; FH; GE; GF; GH; HE; HF; HG
a: \(1-\dfrac{1}{3}-\dfrac{1}{6}-\dfrac{1}{10}-\dfrac{1}{15}\)
\(=\dfrac{30-10-5-3-2}{30}\)
\(=\dfrac{10}{30}=\dfrac{1}{3}\)
b: \(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=\dfrac{8}{9}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{8\cdot9}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{9}\right)=0\)
c: \(\left(-\dfrac{1}{2}\right)-\left(-\dfrac{3}{5}\right)+\left(-\dfrac{1}{9}\right)+\dfrac{1}{27}-\left(+\dfrac{7}{18}\right)+\dfrac{4}{35}-\left(-\dfrac{2}{7}\right)\)
\(=\dfrac{-1}{2}+\dfrac{3}{5}+\dfrac{-1}{9}+\dfrac{1}{27}-\dfrac{7}{18}+\dfrac{4}{35}+\dfrac{2}{7}\)
\(=\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\dfrac{1}{27}\)
\(=\dfrac{21+4+10}{35}+\dfrac{-9-2-7}{18}+\dfrac{1}{27}\)
\(=\dfrac{35}{35}-\dfrac{18}{18}+\dfrac{1}{27}=\dfrac{1}{27}\)
d: \(\dfrac{3}{5}+\dfrac{3}{11}-\left(-\dfrac{3}{7}\right)+\left(\dfrac{2}{17}\right)-\dfrac{1}{35}-\dfrac{3}{4}+\left(-\dfrac{23}{44}\right)\)
\(=\left(\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{1}{35}\right)+\left(\dfrac{3}{11}-\dfrac{3}{4}-\dfrac{23}{44}\right)+\dfrac{2}{17}\)
\(=\dfrac{21+15-1}{35}+\dfrac{12-33-23}{44}+\dfrac{2}{17}\)
\(=\dfrac{35}{35}-\dfrac{44}{44}+\dfrac{2}{17}=\dfrac{2}{17}\)
\(A=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{2019\cdot2021}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2019\cdot2021}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2019}-\dfrac{1}{2021}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2021}\right)=\dfrac{1}{2}\cdot\dfrac{2020}{2021}=\dfrac{1010}{2021}< 1\)
Bài 1:
a; Trong hình vẽ trên có những tia:
CE; CK; Ct; Cn; Ex; Em; En; Ey; Kx; Kt; Ky
Trong hình vẽ có những đoạn thẳng là:
CE; CK; EK
b; Các cặp tia đối nhau là:
Ct Và Ck; CE và Cn; Ex và Ek; Ex và Ey; Ky và Kx; Ky và KE
Bài 2:a;
Các tia đối nhau là:
On và Om; Ox và Oy
Lời giải:
Sau 2 tháng công ty phải trả cho ngân hàng số tiền cả vốn lẫn lãi là:
$500+500\times \frac{1}{100}\times 2=510$ (triệu đồng)
a: \(\dfrac{3}{5}+\dfrac{3}{5\cdot9}+...+\dfrac{3}{97\cdot101}\)
\(=\dfrac{3}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{97\cdot101}\right)\)
\(=\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{4}\left(1-\dfrac{1}{101}\right)=\dfrac{3}{4}\cdot\dfrac{100}{101}=\dfrac{75}{101}\)
b: \(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
\(=\dfrac{1}{3\cdot6}+\dfrac{1}{6\cdot9}+...+\dfrac{1}{30\cdot33}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+...+\dfrac{3}{30\cdot33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\cdot\left(\dfrac{1}{3}-\dfrac{1}{33}\right)=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)
c: \(\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{99}+1\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{100}{99}=\dfrac{100}{2}=50\)
d: \(\left(1-\dfrac{1}{7}\right)\left(1-\dfrac{2}{7}\right)\cdot...\cdot\left(1-\dfrac{2014}{7}\right)\)
\(=\left(1-\dfrac{7}{7}\right)\cdot\dfrac{6}{7}\cdot\dfrac{5}{7}\cdot...\cdot\dfrac{-2007}{7}\)
\(=\left(1-1\right)\cdot\dfrac{6}{7}\cdot\dfrac{5}{7}\cdot...\cdot\dfrac{-2007}{7}\)
=0