Cho a, b, c là các số thực đôi một phân biệt sao cho a 3 + b 3 + c 3 = 3abc. Tính giá trị biểu thức P = a + b/c . b + c/a . c + a/b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a^3 + b^3 + c^3 = 3abc`
`=> a^3 + b^3 + c^3 - 3abc = 0`
`=> (a+b)^3 - 3ab(a+b) + c^3 - 3abc = 0`
`=> ((a+b)^3 + c^3) - (3ab(a+b) + 3abc) = 0`
`=> (a+b+c) ((a+b)^2 - (a+b)c + c^2) - 3ab(a+b+c) = 0`
`=> (a+b+c)(a^2 + 2ab + b^2 - ac - bc + c^2) - 3ab(a+b+c) = 0`
`=> (a+b+c)(a^2 + 2ab + b^2 - ac - bc + c^2 - 3ab) = 0`
`=> (a+b+c)(a^2 - ab + b^2 - ac - bc + c^2) = 0`
Trường hợp 1:
`a+b+c = 0 (đpcm)`
Trường hợp 2:
`a^2 - ab + b^2 + ac + bc + c^2 = 0`
`<=> 2a^2 - 2ab + 2b^2 - 2bc +2c^2 - 2ca = 0`
`<=> a^2 - 2ab + b^2 + b^2 - 2bc +c^2 + c^2 - 2ac + a^2 = 0`
`<=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0`
Do `{((a-b)^2 >=0),((b-c)^2 >=0),((c-a)^2 >=0):}`
`=> (a-b)^2 + (b-c)^2 + (c-a)^2 >= 0`
Dấu = có khi:
`{(a=b),(b=c),(c=a):}`
Hay `a=b=c (đpcm)`
Ta có :a^3+b^3+c^3=3abc⇒a^3+b^3+c^3-3abc=0
⇒(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0
TH1: a+b+c=0
TH2:a^2+b^2+c^2-ab-ac-bc=0
⇒2a^2+2b^2+2c^2-2ab-2bc-2ac=0
(a-b)^2+(b-c)^2+(c-a)^2=0
⇒a=b=c
Gọi hai số là a,b
Tỉ lệ giữa hai số ban đầu là 2/5 nên \(\dfrac{a}{b}=\dfrac{2}{5}\)
=>b=2,5a
Nếu thêm 12 đơn vị vào số thứ nhất và bớt 12 đơn vị ở số thứ hai thì hai số mới có tỉ lệ là \(\dfrac{4}{3}\) nên ta có:
\(\dfrac{a+12}{b-12}=\dfrac{4}{3}\)
=>\(\dfrac{a+12}{2,5a-12}=\dfrac{4}{3}\)
=>10a-48=3a+36
=>7a=84
=>a=12
=>b=2,5a=30
vậy: Hai số cần tìm là 12;30
F={1;3;6;...;4950}
=>\(F=\left\{\dfrac{1\cdot2}{2};\dfrac{2\cdot3}{2};\dfrac{3\cdot4}{2};...;\dfrac{99\cdot100}{2}\right\}\)
=>F có 99 phần tử
Ta có:
`1 + 2 = 3 (`Số thứ `2)`
`1+2+3 = 6 (`Số thứ `3)`
`1+2+3+4 = 10 (Số thứ `4) `
....
`1+2+3+4+...+x = 4950` (Số thứ `x)`
`=> x/2 . (x+1) = 4950`
`=> x(x+1) = 9900`
Mà `9900 = 99 . 100`
`=> x = 99`
Vậy tập hợp F có 99 phần tử
Số đối của \(\dfrac{2}{3}\) là: 0 - \(\dfrac{2}{3}\) = - \(\dfrac{2}{3}\)
Số đối của - \(\dfrac{5}{6}\) là: 0 - (- \(\dfrac{5}{6}\)) = \(\dfrac{5}{6}\)
Số đối của 0 là 0 - 0 = 0
Số đối của -3 là 0 - (-3) = 3
Số đối của 14 là 0 - 14 = - 14
Đặt \(P=-x^2+4xy-5y^2-2x+4y-5\)
\(=-\left(x^2-4xy+4y^2\right)-2\left(x-2y\right)-1-y^2-4\)
\(=-\left(x-2y\right)^2-2\left(x-2y\right)-1-y^2-4\)
\(=-\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]-y^2-4\)
\(=-\left(x-2y+1\right)^2-y^2-4\)
Do \(\left\{{}\begin{matrix}-\left(x-2y+1\right)^2\le0\\-y^2\le0\\-4< 0\end{matrix}\right.\) ; \(\forall x;y\)
\(\Rightarrow-\left(x-2y+1\right)^2-y^2-4< 0;\forall x;y\)
Vậy P luôn âm
(15 - x) + 2 = 12
=> 15 - x = 12 - 2
=> 15 - x = 10
=> x = 15 - 10
=> x = 5
Vậy: ...
a,b,c là các số thực đôi một phân biệt
=>\(a-b;b-c;a-c\) đều khác 0
\(a^3+b^3+c^3=3bac\)
=>\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
=>\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
=>\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
=>\(\left(a+b+c\right)\left[2a^2+2b^2+2c^2-2ab-2ac-2bc\right]=0\)
=>\(\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=0\)
=>\(\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\left(loại\right)\end{matrix}\right.\)
=>a+b+c=0
=>a+b=-c; a+c=-b; b+c=-a
\(P=\dfrac{a+b}{c}\cdot\dfrac{b+c}{a}\cdot\dfrac{c+a}{b}=\dfrac{-c}{c}\cdot\dfrac{-a}{a}\cdot\dfrac{-b}{b}=-1\)